
e c o l o g i c a l m o d e l l i n g 2 1 9 (2 0 0 8) 212–225

avai lab le at www.sc iencedi rec t .com

journa l homepage: www.e lsev ier .com/ locate /eco lmodel

Modeling and simulation of fire spreading through the
activity tracking paradigm

A. Muzya,∗, J.J. Nutarob, B.P. Zeigler c, P. Coquillardd

a Laboratory UMR CNRS LISA, Università di Corsica-Pasquale Paoli, UFR Drittu, Scenzi suciali, ecunòmichi è di gestioni, 22, av. Jean
Nicoli, BP 52, 20250 Corti, France
b Oak Ridge National Laboratory, PO Box 2008, MS6085 Oak Ridge, USA
c Arizona Center for Integrative Modeling and Simulation, Department of Electrical and Computer Engineering, University of Arizona,
1230 E Speedway Boulevard, Tucson, AZ, USA
d Laboratory UMR Biotic Interactions and Plant Health, AgroBiotech Center, 400 route des Chappes, B.P.167,
06903 Valbone-Sophia Antipolis, France

a r t i c l e i n f o

Article history:

Received 19 February 2008

Received in revised form

25 July 2008

Accepted 22 August 2008

Published on line 17 October 2008

Keywords:

Fire spreading

Component-based modeling and

a b s t r a c t

Modeling and simulation is essential for understanding complex ecological systems. How-

ever, knowledge of the structure and behavior of these systems is limited, and models must

be revised frequently as our understanding of a system improves. Moreover, the dynamic,

spatial distribution of activity in very large systems necessitates mapping natural mecha-

nisms as logically as possible onto computer structures. This paper describes theoretical and

algorithmic tools for building component-based models and simulations of dynamic spa-

tial phenomena. These methods focus attention on and exploit the irregular distribution of

activity in ecological processes. We use the DEVS formalism as the basis for a component-

based approach to modeling spatially distributed systems. DEVS is a mathematical theory of

discrete-event systems that is well suited for describing large systems that are described by
simulation

Activity tracking paradigm

small parts with irregular, short-range interactions. This event-based approach to modeling

leads naturally to efficient simulations algorithms which focus on the active parts of a large

model. Ecological modeling benefits from these efficient the simulation algorithms and the

reusability of the model’s basic components. Our event-based method is demonstrated with

a physics-based model of fire spread.

attention is paid to inactive entities, except from a descriptive
1. Introduction

Ecosystem analysis and understanding mostly necessitates
estimating values of parameters of active entities (animals
or plants or abiotic components of the system). Thus, the
greatest efforts of researchers are usually devoted to tracking

activity (also called monitoring activity) in the components of
ecosystems. Examples can be found in animal ecology (e.g.,
radio and GPS tracking methods), behavioral ecology (e.g.,

∗ Corresponding author.
E-mail address: a.muzy@univ-corse.fr (A. Muzy).

0304-3800/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2008.08.017
© 2008 Elsevier B.V. All rights reserved.

video tracking), plant ecology (e.g., population dynamics, mon-
itoring of growth, of seed dispersal, of chemical secretion
and of climatic parameters) and in fresh water and marine
ecosystems (e.g., monitoring of fluxes, of hydrodynamics and
of concentrations of various substances). On the contrary, little
point of view.
The ability to model ecological systems has been greatly

improved over the last two decades by advances in the

mailto:a.muzy@univ-corse.fr
dx.doi.org/10.1016/j.ecolmodel.2008.08.017

g 2 1

m
n
o
e
a
a
g
a
(
t
m
s
u
t
L
t

i
a
A
b
m
1
a
i
l
i
t
c
p
p
w
e

t
a
a
p
m
2
a
T
t
t
e
d
s
T
t
m
S
H
2

r
u
i
3
w
c

e c o l o g i c a l m o d e l l i n

ethods used to build conceptual models and in the tech-
ology for simulating those models. Because ecology focuses
n living entities, the paradigm of individual based mod-
ling has been widely developed. Individual based models
re implemented in several ways: deterministic cellular
utomata; stochastic cellular automata (Balzter et al., 1998);
aps models (forest growth models) in which each cell of
grid holds a list of entities with attributes and methods

Norby et al., 2001); multi-agents model mixing stochas-
ic and deterministic processes (Parker et al., 2003) and

ultiple models in which the processes act on entities at
everal abstraction levels at the same time (from individ-
als to groups and to population) by means of various
echniques (e.g., Markov analysis, Monte Carlo simulations,
eslie’s matrixes, EDO and EDP, and finite element calcula-
ions).

Object-oriented techniques are widely used for model-
ng and simulation of systems (Sequeira et al., 1991; Baveco
nd Smeulders, 1994; Holst et al., 1997; Hill et al., 1998;
lfredsen and Sæther, 2000; Spanou and Daoyi, 2000). The
enefits of using an object-oriented approach for ecological
odeling and simulation are now well recognised (Silvert,

993). Components extend object-oriented concepts to cre-
te a framework for dealing with hierarchical (sub-)systems
nteracting through well defined interfaces. In addition, eco-
ogical models take advantage of component-based design
n several ways (Meyer, 1988 in Papajorgji et al., 2004):
o improve reusability and ease maintenance, to enable
ross-platform computing, and to combine distributed com-
onents through a service-oriented architecture. In this
aper, we consider components to be self-contained systems
ith well-defined interfaces that send and receive discrete

vents.
The principle of activity tracking follows naturally from

his view of components as discrete-event systems (Muzy
nd Zeigler, 2008). Simulation algorithms that are based on
ctivity tracking exploit the natural, dynamic variation of a
rocess in time and space. Although complexity of environ-
ental models can be reduced a posteriori (Lawrie and Hearne,

007), a priori design, analysis and implementation structures
re provided here to build efficient computational models.
hese algorithms are both efficient and easy to apply when

he model is conceived of as a collection of components
hat interact through discrete events. Activity focused mod-
ling, using the constructs of the DEVS formalism and event
riven simulations, is a coherent approach to building efficient
imulation models of dynamic, spatially distributed systems.
his coherent world-view is particular useful for navigating

he numerous methods that have been proposed for building
odels of complex ecological systems (Sequeira et al., 1991;

ilvert, 1993; Baveco and Smeulders, 1994; Holst et al., 1997;
ill et al., 1998; Alfredsen and Sæther, 2000; Spanou and Daoyi,
000).

This paper is organized as follows. In Section 2, a brief
eview of the state-of-the-art in forest fire modeling and sim-
lation is provided, and the activity tracking paradigm is
ntroduced and applied to a physics-based model. In Section
, the activity-based simulations presented. In Section 4, the
hole approach is discussed. Section 5 summarizes and con-

ludes the paper.
9 (2 0 0 8) 212–225 213

2. Material and methods

Forest fires have well known economic, ecological, health
and social impacts. The huge forest fires in Greece, Portu-
gal, Australia and California that occurred in 2007 are recent
reminders of these costs, and the acres of forest burned by
wild fires each year is increasing exponentially (cf. Fig. 1).

Modeling fire spread behavior is a hard task. In physics,
very precise models focusing on relevant generic mechanisms
(convection, diffusion and radiation) are usually experimented
with by scientists to improve their knowledge. To develop
generic, easy to modify, and efficient implementations of
these models is very challenging.

2.1. Forest fire modeling

The behavior of forest fires is better understood now than it
was 20 years ago. Significant research has been conducted in
connection with the forest fires, particularly on the conditions
favorable to ignition (period and intensity of hydric deficit:
Dolling et al., 2005; Núñez-Regueira et al., 2001, type of fuel:
Dong Hyun et al., 2006), thermochemical and physicochemal
characteristics, biological traits, bioclimatic parameters of var-
ious type of vegetation (Núñez-Regueira et al., 2000), and on
the conditions of their propagation (topography, direction and
intensity of the winds, connectivity of the surfaces covered by
vegetation; Thompson et al., 2000).

Forest fire models can be separated into stochastic and
deterministic (analytical) models. Stochastic models aim at
predicting the most probable fire behavior in average con-
ditions, using evolution rules drawn from lab experiments
and field data samples. On the contrary, in analytical models,
the fire behavior is usually deduced from the physical laws
driving the evolution of the system. Recently, several sophis-
ticated models were proposed (Barros and Mendes, 1997;
Karafyllidis and Thanailakis, 1997; Hernández Encinas et al.,
2007; Yassemia et al., 2008) and successfully validated by com-
parison with real fires. All of these models use either simple
cellular automata or dynamical structure cellular automata
(DSCA).

Based on Weber’s classification (Weber, 1990), three kinds
of mathematical models for fire propagation can be identified
according to the methods used in their construction. The first
type of models are statistical models (McArthur, 1966), which
make no attempt to include specific physical mechanisms,
being only a statistical description of test fires. The results can
be very successful in predicting the outcome of fires similar to
the test fires. However, the lack of a physical basis means that
the statistical models must be used cautiously outside the test
conditions. The second category of models is semi-empirical
models (Rothermel, 1972) based on the principle of energy con-
servation but which do not distinguish between the different
mechanisms of heat transfer. Rothermel’s stationary model
is a one-dimensional model, in which a second dimension
can be obtained using propagation algorithms (Richards, 1990)

integrating wind and slope. Finally, physical models (Albini,
1985) integrate wind and slope effects in a more robust man-
ner by describing the various mechanisms of heat transfer
and production. Physical mechanisms are described using a

214 e c o l o g i c a l m o d e l l i n g 2 1 9 (2 0 0 8) 212–225

Me

• Step II: New states are computed for active components from
their current states and inputs. Components that changed
state significantly are marked and added to the active set;
components that do not undergo a significant change of
Fig. 1 – Annual area burned by wildfires in Arizona and New
fires SOI/).

chemical, thermal and mechanical definition of basic fire phe-
nomena. Hence, physical and semi-empirical models use the
definition of basic fire phenomena to physically describe fire
propagation.

Today, most ready-to-run software for fire spread simula-
tion (Veach et al., 1994; Finney, 1995; Coleman and Sullivan,
1996; Albright and Meisner, 1999; Lopes et al., 2002) and simu-
lations of fire spreading on large-scale (Wu et al., 1996; Hargove
et al., 2000; Miller and Yool, 2002) are based on Rothermel’s
model (Rothermel, 1972). A lot of effort has been placed in
improving simulations of Rothermel’s model. In the CA field,
studies pinpoint the need for developing new classes of CA
for fire spreading applications (Karafyllidis and Thanailakis,
1997; Berjak and Hearne, 2002). Many methods based on
discrete-event formalisms and object-oriented programming
have been proposed to improve CA capabilities for fire spread
simulation (Vasconcelos et al., 1995; Ntaimo and Zeigler, 2005;
Ameghino et al., 2001; Muzy et al., 2003). Unlike basic CA,
these models can receive external update information, the fire
perimeter can be updated at any moment due to the continu-
ous time nature of the discrete-event specifications, and active
cells can be dynamically created and removed to save memory
for large cell spaces.

2.2. Activity tracking framework

The appropriate choice of a time management scheme
depends on the nature of the system and on the modeling
objectives. For a system in which every state change occurs
at a fixed increment of time, discrete events will produce
simulation overhead, and a discrete-time driven simulation
will be more efficient because we do not have to predict (by
computation) what we already know will happen and when.
However, in natural systems discrete-time evolution does not
exist. Discrete-time flows in a model exist only after the dis-
cretization of continuous time by the modeler (Ralston and
Rabinowitz, 2001). For other systems, “while other formalisms
allow representation of space and resources, only discrete-
event models offer the traditional ability to explicitly and
flexibly express time and its essential constraints on com-
plex adaptive systems behavior and structure” (Zeigler, 2005).
The advantage of discrete-event driven simulations is that a
simulation model evolves directly from one state change to

another. No computations are performed during inactive peri-
ods, but this requires that the next state change can be forecast
from the current state and it requires an efficient method for
scheduling events.
xico (http://geochange.er.usgs.gov/sw/impacts/biology/

Fig. 2 depicts the essential parts of an activity tracking
simulation. It merges the three usual world-views (activity-,
event-, and process-oriented strategies) into a single frame-
work that includes discrete-time driven models as well; the
usual world-views are underlined where they appear in the
activity tracking strategy. Marks are added to and removed
from components to track activity as it propagates through the
model; these marks are used to maintain the set of active com-
ponents as the simulation progresses. Every activity tracking
simulation has two basic steps:

• Step I: Components exchange information and the propaga-
tion of activity is tracked. The current active set is scanned
for components that have output events and these events
are routed to their destinations; routing in hierarchal mod-
els can be done recursively (for more information, see Muzy
and Nutaro, 2005). The active set is updated to include
atomic components that have received these output events.
Atomic components are basic behavioral components that
are coupled together to build a hierarchical structure (for
more information, see Zeigler et al., 2000).
Fig. 2 – State-centric activity tracking pattern.

http://geochange.er.usgs.gov/sw/impacts/biology/fires_SOI/
http://geochange.er.usgs.gov/sw/impacts/biology/fires_SOI/

g 2 1 9 (2 0 0 8) 212–225 215

l
L
G
M

2
s
C
s
l
t
t
s
t
f
o
a
t
i
i
c
t

b
t
s
s
i
1
e
a
m
a
t
D
w

t

N

w
s

m

M

w

•

•

Fig. 3 – A dynamic structure cellular automata. The DSCA
component has input and output sets XDSCA and YDSCA

constituted of ports (represented as boxes) to interact with
external components in a modular way. A modular
specification allows the encapsulation and increasing
behavioral autonomy of components. However, interacting
massively through discrete events and ports has a
simulation cost. Case (1) corresponds to a non-modular
specification of cells (transition functions of cells directly
influencing each others). Case (2) corresponds to a modular
specification of cells. The network executive � is specified
here in a non-modular way (for efficient access of
component states). Coupling between cells and DSCA
inputs and outputs are indicated as dash lines. When the
non-modular specification is chosen, the corresponding
e c o l o g i c a l m o d e l l i n

state are removed from the active set. In a discrete-event
driven simulation, the active set is an event scheduler and
the active components are in the schedule or will receive an
input from a model in the schedule.

This a state-centric two-step pattern. Both local and global
evels of modularity for state transitions can be achieved.
ocal transitions are achieved on states of single components.
lobal transitions are achieved on many component states.
ore details can be found in Muzy and Zeigler (2008).

.2.1. Dynamic structure cellular automata (DSCA)
pecification
ellular models are commonly used to model ecological
ystems because spatial relationships are a crucial to how eco-
ogical systems function (Wu and David, 2002). Regardless of
he simulation kernel used, be it time driven or event driven,
he simulation algorithm rarely focuses computations exclu-
ively on active cells, but carefully scrutinizes every cell in
he grid. This type of implementation is conceptually different
rom the activity focused evolution of the real process and at
dds with the final analysis where we focus on change, not its
bsence. More practically, this approach to simulation requires
remendous computational resource and consequently is lim-
ted with regards to the physical space it can handle. For
nstance, a forest growth simulator developed by some of us
annot reasonably manage more than 25Ha within a simula-
ion over one century on a fast running desktop computer.

The ability of cellular automata to change topology has
een investigated through two research directions. First, struc-
urally dynamic cellular automata (SDCA) (Alonso-Sanz, 2007)
tudy a phenomenology of neighborhood changes during the
imulation. Discrete-value cells change neighborhood accord-
ng to their own value. Second, DSCA (Barros and Mendes,
997; Muzy et al., 2004) are based on the System Theory. Math-
matical structure specifications and simulation algorithms
re provided which constitute a generic framework for imple-
enting simulation models. DSCA models specify structure as
function of the model’s complete state, and the structure of

he model can change as the states of its components change.
SCA can be specified as discrete-time or discrete-event net-
orks.

We present here a network specification of dynamic struc-
ure cellular automata (DSCA, cf. Fig. 3):

etworkDSCA = 〈XDSCA, YDSCA, M�〉

here XDSCA and YDSCA, are respectively the input and output
ets.

Dynamic structure changes are handed by the executive
odel:

� = 〈X�, Y�, S�, ı�, ��, ��〉

The structural state is defined as S� = 〈D, {Ci}, {Ii}, {Zi,j}〉,
hich can be described as follows:
D contains the references i (coordinates or number) of active
cells,
{Zi,j} is the set of coupling functions. Coupling functions
describe how components are connected:
coupling function does not need to be specified.

◦ The network executive � is embedded in the DSCA:
ZDSCA→�: XDSCA → X� and Z�→DSCA: Y� → YDSCA;

◦ The network executive � can be connected to a cell c ∈ D:
Z�→cell: Y� → Xc and Zc→�: Yc → X�;

◦ A cell can be externally connected to both input XDSCA and
output YDSCA of the DSCA: ZDSCA→c: XDSCA → Xc, Zc→DSCA:
Yc → YDSCA;

◦ A cell can be internally connected to its neighboring cell
p ∈ D as: Zp→c: Yp → Xc and Zc→p: Yc → Xp;

• For a cell c ∈ D, Ic = {Nc, DSCA, �}, I� = {{Ci}} where Nc is the
neighborhood of a cell c.
ı�:X� × S� → S�, is the structural state transition function.
According to current structural state and inputs, the transi-
tion function computes a new structural state. Changes in
structure include changes in cells neighborhoods, changes
in cell definitions, and addition or deletion of cells. The
structural state transition function is composed of inter-
nal and external functions ı� =

{
ıint�

∪ ıext�

}
. External

transitions account for external events and internal transi-
tions for autonomous computations (for more information:
Barros, 1997).
��: S� → Y� is the structural state output function. Through

the output function structural states can be sent to other
models.
�� : S� → N for a discrete-time base and �� : S� → R

+ for a
discrete-event time base.

i n g
216 e c o l o g i c a l m o d e l l

As a minimum assumption, each cell c can be specified as
an atomic component:

Ci = 〈Xi, Yi, Si, ıi, �i, �i〉

where

Xi and Yi, are respectively input and output sets.
Si = 〈(m, n), SNi , phase〉, with{

SNi =
{

sp/p ∈ Ii
}

phase = {“active”, “passive”, . . .}
where (m, n) ∈N2 are cells’ coordinates, Ni has been defined
previously as the neighborhood set, SNi represents the states
of neighboring cells. When receiving or sending its state, a
cell is in phase “active”, otherwise it is in phase “passive”.
ıi: Xi × Si → Si is the transition function1 composed of internal
and external functions ıi = {ıinti

∪ ıexti
}, where ıinti

: Si → Si,
and ıexti

: Xi × Si → Si.
�i: Si → Yi is the output function.
�i : Si → N for a discrete-time base and �i : Si → R

+ for a
discrete-event time base.

For a more complex cell, the latter can be decomposed as
a network (dynamic structure or not) of sub-components
(cf. sub-section 2.3.6). However, regarding the closure under
coupling of dynamic structure networks, precise network
specifications can be expressed by (or is equivalent to) a single
atomic specification (more details in Zeigler et al., 2000).

2.3. Fire spread application

Models derived from basic physical processes describe the
spread of fire in terms of well-understood heat propaga-
tion principles (radiation, convection, etc.) These continuous
mathematical models can be discretized in several differ-
ent ways for the purposes of simulation using discrete event
and discrete-time methods. Our work extends the model pre-
sented in (Muzy et al., 2005a,b) to include an implicit and
a quantization-based descretization through activity-based
modeling and simulation.

2.3.1. The physics-based model
Physics-based fire spread models usually consist of reaction
diffusion equations. These PDEs cannot be solved analytically.
They have to be solved numerically. Discrete-time solutions
can be obtained using Explicit (Forward) or Implicit (Backward)
Euler methods.

The physical model we use (Balbi et al., 1998) is composed
of elementary cells of earth and plant matter. Under no wind
and no slope conditions, the temperature of every cell is rep-
resented by the following PDE:

∂T

∂t
= −k(T − Ta) + K

(
∂2T

∂x2
+ ∂2T

∂y2

)
− Q

∂�v

∂t
(1a)
�v = �v0 if T < Tig (1b)

1 Modularity cases: (1) Si = SNi
i

and Xi = XDSCA (assuming external
influences of cells), (2) Xi = XDSCA × XNi

i
, with XNi

i
= {xp/p ∈ Ii}.
2 1 9 (2 0 0 8) 212–225

�v = �v0 · e−˛(t−tig) if T ≥ Tig (1c)

T(x, y, t) = Ta at the boundary (1d)

T(x, y, t) ≥ Tig for the burning cells (1e)

T(x, y, 0) = Ta for the non-burning cells at t = 0 (1f)

where Ta (27 ◦C) is the ambient temperature, Tig (300 ◦C) is the
ignition temperature, tig (s) is the ignition time, T (◦C) is the
temperature, K (m2 s−1) is the thermal diffusivity, Q (m2 ◦C/kg)
is the reduced combustion enthalpy, ˛ (s−1) combustion time
constant, �v (kg m−2) is the vegetable surface mass, and �v0

(kg m−2) is the initial vegetable surface mass (before the cell’s
combustion). The term k(T − Ta) represents thermal exchanges
with the air, the term K((∂2T/∂x2) + (∂2T/∂y2)) represents the dif-
fusion phenomenon, and the term Q(∂�v/∂t) represents the
combustion energy (the reaction).

2.3.2. Discrete-time solutions
In a previous study, Finite Element and the Finite Differ-
ence Methods were used to discretize this physical model
(Santoni, 1996). The Finite Difference Method provided equiv-
alent results as the Finite Element Method. However, the latter
appeared more complex to implement and involved longer
execution times. Therefore, the Finite Difference Method has
been chosen.

2.3.3. Explicit solution
The physical model (1a)–(1f) solved by the Explicit Method
leads to the following difference equation:

Tn+1
i,j

= a(Tn
i−1,j + Tn

i+1,j) + b(Tn
i,j−1 + Tn

i,j+1) + cQ

(
∂�v

∂t

)n

i,j

+ dTn
i,j + e (2)

where Tij is the grid node temperature. The coefficients a, b, c,
d and e depend on the time step and the mesh size considered.

The study domain is meshed uniformly with cells of 1-cm2

and a time step of 0.01 s. This is a very small time and space
scale. However, this small scale allows us to be consistent in
terms of both error and physical descriptions of a fire spread
thus achieving a precise analysis of simulation results.

The propagation domain consists of a cellular model where
each future cell temperature is calculated using the current
cell temperature and temperatures of the cardinal neighbors.

2.3.4. The implicit solution
Implicit methods are typically more stable than explicit meth-
ods and allow larger time steps thus reducing execution times.
The physical model (1a–f) solved by the Implicit Method leads
to the following difference equation:

∣∣∣Tk+1,n+1 − Tk,n+1
∣∣∣ < ε (3a)
i,j i,j

Tn+1
i,j

= a′(Tn+1
i−1,j

+ Tn+1
i+1,j

) + b′(Tn+1
i,j−1 + Tn+1

i,j+1) + c′Q
(

∂�v

∂t

)n

i,j

+ d′Tn
i,j + e′ (3b)

e c o l o g i c a l m o d e l l i n g 2 1 9 (2 0 0 8) 212–225 217

func

w
a
c

t
w
n
l
(

U
t
b
s

2
T
c
w
i
i
s
f
a
b
t
s
T
r

l
c
c
i
p
a
u
i
d

active or not. If a cell’s state is greater than a fixed threshold,
the cell turns ‘non testing’ and the threshold test is not used
anymore, for that particular cell, during the simulation.
Fig. 4 – Transition

here k is the iteration step. The coefficients a′, b′, c′, d′

nd e′ depend on the time step and on the mesh size
onsidered.

The solution is calculated at each time step (of 0.1 s) using
he iterative method of Jacobi (Sibony and Mardon, 1988) for
hich the convergence condition (3a) is used to pass on to the
ext time step. As long as all the whole temperatures calcu-

ated between two successive iterations are not less than an ε

10−3 K for instance), the simulation clock is not incremented.
In this instance, the problem could be solved with a Low

p decomposition. However, to end up with a CA structure,
he Jacobi method is used. Hence, performance metrics can
e compared with other explicit and quantization-based CA
tructures.

.3.5. Dynamic structure cellular automata solution
o focus the simulation on active cells, we use the basic prin-
iples exposed in (Zeigler et al., 2000) to predict whether a cell
ill possibly change state or will definitely be left unchanged

n a next global state transition: “a cell will not change state
f none of its neighboring cells changed state at the current
tate transition time”. Nevertheless, to obtain optimum per-
ormance the entire set of cells cannot be tested. Thereby, an
lgorithm, which tests only the neighborhood of the active
ordering cells of a propagation domain, has been defined for
his type of phenomena. We specify here a DSCA as a dynamic
tructure discrete-time network embedding initial ignitions.
his DSCA is used here only to track active cells (adding and
emoving them from the active set).

As depicted in Fig. 4, the activity tracking algorithm is
ocated in the global transition function (ı�) of the DSCA, in
harge of the structure evolution of the cell space. ci.m and
i.n correspond to the coordinates (m, n) of a cell c of reference
∈ D (also abstractly named as ci). Sci.phase corresponds to the
hase of state s ∈ S of a cell i. An activity state (‘inactive’, ‘active’

nd ‘testing’) is added to the cells. The activity state ‘testing’ is
sed to track new activated components. Cells are considered

n ‘testing’ phases when located at the edge of the propagation
omain, ‘non testing’ when not tested at each state transition,
tion of the DSCA.

and ‘passive’ when inactive. Remember that the specification
of cell structures (neighborhood, transition functions, etc.) is
statically pre-allocated.

A propagation example is sketched in Fig. 5 for cardinal and
adjacent neighborhoods. In our algorithm, only cells at the
leading edge of the fire test their neighborhood for cells that
should become active. This minimizes the number of cells that
must be tested for activation at each iteration of the simulation
algorithm.

The result of the executive transition function of Fig. 4
depends on the state of the tested cells. Changes of cells states
are checked between two time steps (|sci · Tk+1

i,j
− sci · Tk

i,j
|), are

compared to a threshold � defined by the user. If |sci · Tk+1
i,j

−
sci · Tk

i,j
| > �, then the cell’s neighbors become active and are

marked as ‘testing’, the cell itself is marked as ‘non testing’.
Notice here the difference between a quantum and a thresh-
old. A quantum consists of discretizing a state in equal finite
values. Considering a particular cell, during the whole simula-
tion, times of boundary crossings are computed continuously.
Conversely, a threshold is used to determine if a cell turns
Fig. 5 – Calculation domain evolution.

i n g 2 1 9 (2 0 0 8) 212–225
218 e c o l o g i c a l m o d e l l

2.3.6. Quantization solution
Quantization of ODEs has been introduced in (Zeigler et al.,
2000; Bolduc and Vangheluwe, 2002; Nutaro, 2003). Instead of
generating approximate solutions at discrete points in time,
the solution is approximated by looking at significant changes
in the system’s state. Efficiency and stability of this discretiza-
tion technique are discussed in (Nutaro and Zeigler, 2007). The
magnitude of change in the solution that is considered to be
significant is called an integration quantum (or quantum). A
quantum can be defined by

D = |˚n+1 − ˚n| (4)

where D is the desired change in the solution at each step of
the computation and ˚n+1 and ˚n are two numerical approx-
imations of the continuous function ˚(t) representing a time
invariant process.

To illustrate the basic elements of quantized integration
methods, a quantized integration scheme for solving a single
ODE can be constructed using the explicit Euler formulae

˚n+1 = ˚n + 	t · f (˚n). (5)

The time required for a quantum change to occur is approx-
imated by

	t = D

|f (˚n)| (6)

If f(˚n) = 0, then 	t → ∞, which indicates that an equilib-
rium state has been reached.

The quantized integration scheme is constructed by sub-
stituting Eq. (6) into Eq. (5) and keeping track of the sign of
the derivative to ensure that the solution moves in the proper
direction. This gives the system

˚n+1 = ˚n + D · sign(f (˚n)) (7)

which approximates successive values of the continuous sys-
tem. The time tn+1 ∈ � of approximated states is given by

tn+1 = tn + d

|f (˚n)| (8)

An approximation example of the function ˚(t) is sketched
in Fig. 6. One can notice that for a continuous time base, the
number of computations needed to approximate the curve ˚(t)
can be reduced, even more when the latter changes slowly
during time.

Eqs. (7) and (8) constitute a quantized integrator. In space,
and when applied to PDEs, using such integrators allows to
track activity, that is, changes in time in one point of the space.
Then, each integrator can be implemented as an atomic model
DEVS.

Quantization of Eq. (1a) consists of discretizing the term of
thermal exchanges, the diffusion term and the reaction term.
Then, in every cell a quantized integrator [cf. Eqs. (7) and (8)]

calculates the temperature of the cell according to the value
of: (1) the term of thermal exchanges (which is discretized), (2)
the term of diffusion (which is discretized), and (3) the reaction
term (which is quantized).
Fig. 6 – Quantization approximation of ODE.

The discretization of the diffusion term in space using cen-
ter differences leads to:

K

(
∂2T

∂x2
+ ∂2T

∂y2

)

≈ K

(
Tn

i,j−1 − 2Tn
i,j

+ Tn
i,j+1

(x)2
+

Tn
i,j−1 − 2Tn

i,j
+ Tn

i,j+1

(y)2

)
(9)

The term of thermal exchanges can be directly discretized:

K(T − Ta) = K(Tn
i,j − Ta) (10)

When the cell is burning, the energy Q(∂�v/∂t) released by
the combustion depends directly on the exponential decrease
of the fuel mass:

�� = Q��0
e−˛(t−tig), if T ≥ Tig (11)

By knowing that the fuel mass will decrease only by one
quantum D, we obtain:

�� − D = Q��0 e−˛ta (12)

Taking the logarithm, we obtain the time advance ta:

ta = 1
˛

ln
�� − D

Q��0
(13)

Every cell is a coupled model composed of two atomic
models: one model implements Eqs. (12) and (13) the other
solves Eqs. (9) and (10). Fig. 7 describes this coupled model
(CM) which is composed of an atomic model of Fuel Decrease
(AMFD) and of an atomic model of Thermal Exchanges and
Diffusion (AMED).

An atomic model AMED is connected to its four cardinal
neighbors through eight ports. Cells’ temperatures are sent
and received through these ports. An atomic model AMFD

describes the evolution of the fuel mass decrease when the
cell is burning. After the reception of the cell’s temperature

(contained in AMED), if the cell is in combustion, the exter-
nal transition function of AMFD will compute the time of next
quantum boundary crossing according to the time advance
(13). At each quantum crossing, computed by an internal tran-

e c o l o g i c a l m o d e l l i n g 2 1

s
d
t
i

3

T
b
w
l
(
i
n
r
p
p
t
h
i
a
a

3
m

F
fi
o
e
s
s
s
s
T
o

s
q
t

Fig. 7 – Cell description.

ition, influenced cells are updated immediately. Finally, the
erivative of the temperature, calculated by AMED, according
o the neighboring cells’ temperatures and to the fuel mass, is
ntegrated using Eqs. (7) and (8).

. Simulation results

o validate the simulation results, experimental fires have
een conducted on Pinus Pinaster litter, in a closed room
ithout any air motion, at the INRA (Institut National de

a Recherche Agronomique) laboratory near Avignon, France
Balbi et al., 1998). These experiments have been performed
n order to observe fire spread for point-ignition fires under
o slope and no wind conditions. The experimental appa-
atus was composed of a one square meter aluminum plate
rotected by sand. A porous fuel bed was used, made up of
ure oven dried pine needles spread as evenly as possible on
he total area of the combustion table (in order to obtain a
omogeneous structure). The experiment consisted in ignit-

ng a point using alcohol. The resulting spread of the flame
cross the needles has been closely observed with a camera
nd thermocouples.

.1. Particularity and validation of the different
ethods

ig. 8 depicts a visual comparison between the simulated
re fronts (using explicit, implicit and quantization meth-
ds) and experimental fire fronts (represented by dots). The
xperimental fire front corresponds to pictures of actual fire
pread positions under laboratory experiments on pine needle
ubstrates. Explicit, implicit and quantization solutions allow
imulating precisely the fire front positions. The quantized
imulation focuses its computational effort on the active cells.
he explicit and implicit CA do not; they do the same amount
f work to simulate each cell, regardless of its rate of change.
Fig. 9 depicts the various evolutions of the simulated fire
pread for many quantum sizes. For large quantum sizes, a
ualitative simulation can be achieved; although the propaga-
ion is delayed, the circular shape of the fire front is conserved.
9 (2 0 0 8) 212–225 219

Besides, for an actual propagation of 221 s, an execution time
of 10 s is obtained on a 1.5 GHz Pentium M Centrino (this com-
puter is used for all experiments described in this paper).
Qualitative simulations can be used to reduce the testing
phase of model development (by execution time reductions),
as well as to improve the rapidity of predictive fire spread sim-
ulations. These simulations are usually used by fire fighter
command centers to predict where will spread the fire. They
do not care when, the only thing they have to know is where
the fire will spread to set fire fighters and vehicles.

Fig. 10 depicts the focus of both quantized and DSCA simu-
lations on active cells. The fire fronts are represented by lines.
Both simulations adaptively track the fire front evolutions by
changing the set of active cells as the simulation is executed.
In Fig. 10, the result of both methods is equivalent for focusing
on active cells.

Fig. 11 depicts how the quantized simulation focuses on
fire fronts for different thresholds. One can notice that few
errors are introduced by truncating information, even when
the threshold is relatively large (up to 30 K). However, for a
quantum of 40 K (and higher), the fire front becomes noticeably
distorted.

3.2. Quantization method

The fuel mass decrease simulated by the atomic model AMFD

is represented in Fig. 12. The end of this negative exponential
curve pinpoints the interest of using a discrete-event simu-
lation to pass directly between significant (as defined by the
integration quanta) values of the continuous state. This allows
reducing the number of state transitions. However, the quan-
tum size of this atomic model has to be carefully chosen
because of the important beginning decreasing slope of the
exponential curve. A too big quantum size leads to significant
errors. A quantum of 0.01 kg/m has been chosen for this model.

As Eq. (1a) does not have analytical solution, the quanti-
zation simulation results are visually validated through the
laboratory experiment. Moreover, an average relative error is
calculated against the explicit simulation results already val-
idated through numerous studies (Balbi et al., 1998):

ε̄ =
N∑

i=1

1 − (qi/q∗
i
)

N

With N = number of cells, qi = explicit value of cell i and q∗
i

=
numerical value of cell i.

Fig. 13 depicts the average relative error for different
quantum sizes of the AMED atomic model, and the same exper-
iment. This curve is almost linear. For very small quantum
values, the error is constant. This means that the quantiza-
tion solution is very close to the actual propagation. Fig. 13
depicts too the number of transitions (which is proportional
to the execution time) of the quantization solution, accord-
ing to different quantum sizes. Increasing the quantum size
reduces the number of transitions. Moreover, until a quantum
size of 5 K, the number of transitions decrease rapidly. For the

quantization solution, a quantum size of 5 K is chosen in the
rest of the paper, leading to an approximate error of 5%.

Fig. 14 compares execution times of the explicit, implicit,
and quantization solutions, for different simulated domain

220 e c o l o g i c a l m o d e l l i n g 2 1 9 (2 0 0 8) 212–225

ted (
1 K),
Fig. 8 – Comparisons at (a) 75 s and (b) 122 s between simula
simulations have been obtained by quantization model (D =

sizes that result from using different numbers of cells (chang-
ing the resolution of the spatial discretization). Concerning the
implicit solution, using a bigger time step (remember that we
have a time step of 0.1 s for the implicit method and 0.01 s for
the explicit one) allows to reduce execution times. However,

quantization execution times are significantly smaller.

The good results obtained for execution times can be
explained by looking at Fig. 15, which depicts the number
of transitions of the different methods for different propaga-

Fig. 9 – Comparison for various quantum sizes D between simul
gray scale) and experimental front fires (dotted line). Both
implicit CA (�t = 0.1 s) and explicit CA (�t = 0.01 s).

tion domain sizes. Indeed, the quantization method greatly
reduces the number of transitions.

3.3. Dynamic structure cellular automata
In the DSCA method, different quantum sizes can be chosen
for both implicit and explicit methods. Errors, number of tran-
sitions and execution times of DSCA (implicit and explicit) are
compared to CA (implicit and explicit).

ated (gray scale) and experimental front fires (dotted line).

e c o l o g i c a l m o d e l l i n g 2 1 9 (2 0 0 8) 212–225 221

Fig. 10 – Focus of the quantization and DSCA simulations on active cells at: (a) 75 s and (b) 122 s (quantization method:
D = 1 K, implicit DSCA: �t = 0.1 s and � = 1 K, and explicit DSCA: �t = 0.01 s and � = 1 K).

F

3
a
F
t
t
f

F
b

Fig. 13 – Number of transitions and error for different
quantum sizes (quantization method).
ig. 11 – The DSCA explicit focus (explicit DSCA: �t = 0.1 s).

.3.1. Implicit method in dynamic structure cellular
utomata

ig. 16 depicts the average relative error obtained for different
hreshold sizes. This error is linear and tends to zero for small
hreshold sizes, thus exhibiting the precision of the method
or small thresholds. Fig. 16 depicts too the number of transi-

ig. 12 – Fuel mass decrease using a discrete-event time
ase (quantization method, D = 0.01 kg/m).

Fig. 14 – Execution times for different domain sizes
(quantization model: D = 5 K, implicit CA: �t = 0.1 s, explicit
CA: �t = 0.01 s).
tions (which is proportional to the execution time) for different

threshold sizes when simulating DSCA implicit schemes. We
can notice that reducing the quantum size, the reduction in
the number of transitions, and consequently in the execution
time, is not as great as for the quantization method.

222 e c o l o g i c a l m o d e l l i n g 2 1 9 (2 0 0 8) 212–225

Fig. 15 – Number of transitions for different domain sizes
(quantization model: D = 5 K, implicit CA: �t = 0.1 s, explicit
CA: �t = 0.01 s).

Fig. 16 – Number of transitions and error for different

temperature quanta and 10,000 cells (implicit DSCA:
�t = 0.1 s).

3.3.2. Explicit method in dynamic structure cellular

automata
Fig. 17 depicts the error of the DSCA explicit simulation. Here,
surprising results are obtained. Indeed, until a temperature
gradient of 10 K, errors of the restricted calculation domain

Fig. 17 – Number of transition and error for different
quantum sizes and 10,000 cells (explicit DSCA: �t = 0.01 s).
Fig. 18 – Execution time comparisons.

balance those induced when all cells of the calculation domain
compute their states. However, very small errors are induced.
Fig. 17 depicts too the number of transitions (which is pro-
portional to the execution time) for different threshold sizes
when simulating DSCA explicit schemes. As for DSCA implicit
schemes, we can notice that reducing the threshold size does
not reduce the number of transitions as effectively as the
quantization method. More over, when compare to the DSCA
implicit scheme, the reduction of transitions decreases more
slowly.

4. Discussion

For different numbers of cells, Fig. 18 compares execution
times of all methods (except the CA implicit one which is
approximately similar to the CA explicit one). To have approx-
imately the same error, a quantum of 5 K is taken for the
quantization method and thresholds of 10 K for both implicit
and explicit DSCA ones. When compared to the actual prop-
agation time, only the DSCA methods (explicit and implicit)
give execution times that could satisfy a real time constraint.
Indeed, in a simulator prediction perspective, it would be bet-
ter to predict fire positions quicker than the fire propagates in
the reality. Furthermore, both of the DSCA methods provide
approximately the same execution time results.

Above 150,000 cells, the execution time of the quanti-
zation method exceeds the actual propagation time. Above
this number, the number of active cells is too high to
be managed by scheduler data structures of discrete-event
approaches. This effect is shown in Fig. 18. Nonetheless, the
quantization method necessitates less computations than the
non-adaptive explicit and implicit methods.

Fig. 19 describes the rate of spread of the fire front. After
the ignition, fire spread exhibit a transient and then a steady
state corresponding to a constant rate of spread.

The evolution of the number of active cells during the sim-

ulation for different thresholds is presented in Fig. 20. We
notice that even with a threshold of 1 K the number of active
cells never exceeds 5000 cells i.e. less than one half of the
total number of cells. Under 50 s fire speed grows quickly, this

e c o l o g i c a l m o d e l l i n g 2 1

Fig. 19 – Fire front rate of spread.

F

i
s
n
d

l
Q
u
n
o

5

T
s
b
o
m
w
fi
e

d
c

r

ig. 20 – Number of active cells (explicit DSCA: �t = 0.01 s).

s the transient state. Above 50 s, fire front speed reaches a
teady state. This explains the change of slope at 50 s for the
umber of active cells. Above 150 s, the number of active cells
ecreases because fire reaches the plate borders.

Regarding the activity state of natural propagations the
atter can be stationary or non-stationary (Coquillard, 1995).
ualitative and quantitative analysis of the activity of a nat-
ral phenomenon is a (or the?) fundamental (and usually
eglected) modeling phase to understand the whole dynamics
f an ecological system.

. Conclusions

he activity paradigm has been applied here to a complex
ystem of fire spread. Distribution of energy in space has
een detected through well-defined structures. Complexity
f energy exchanges and transformations has been defined
odularly and hierarchically. This new paradigm proves to be
ell adapted to spatial ecological propagations (of trees, alga,
shes, etc.). Its genericity can be experimented now on other

nergy/information/material flows.

At the computer modeling and simulation levels, we have
emonstrated that significant reductions of execution times
an be obtained by naturally focusing computations on active
9 (2 0 0 8) 212–225 223

cells of a large-scale cellular model. Two different methods
have been introduced. The DSCA method allows the modeler
to design tracking mechanisms at the modeling level, truncat-
ing information. On the other hand, the quantization method
is a technique for discretizing the state of a continuous sys-
tem. DSCA results proved to be better than the quantization
ones for small errors, but the quantization method allows for
qualitative simulation that preserves the fire shape and greatly
reduces the execution time.

A new paradigm has been applied for building simula-
tions that adaptively match their execution strategy to suit the
dynamics of the model that is being simulated. Advantages of
using this paradigm for modeling and simulating components
of environmental phenomena can be summarized as follows:

1. A coherent formal and operational framework is pro-
vided to build computational environmental models of
continuous and discrete systems. Both discrete-time and
discrete-event driven constructions can be achieved.

2. Knowledge about environmental models can be organized
within the DEVS-scheme (Vasconcelos, 1993), trough tax-
onomy, decompositions and couplings.

3. Tracking mechanisms are made simple and explicit. Direct,
faithful and intuitive mappings between Nature and com-
puters are defined.

4. Both simulation and models are made more efficient. A
trade-off between error and execution time can be adjusted
to fit modeling objectives.

The proposed techniques have significant potential that
has been demonstrated empirically here and elsewhere (e.g.,
in simulation: Muzy and Nutaro, 2005 and formal modeling:
Muzy et al., 2004); the method merits further empirical and
formal investigation to verify, validate and extend its utility.

e f e r e n c e s

Albini, F.A., 1985. A model for fire spread in wildland fuels by
radiation. Combustion Science and Technology 42, 229–258.

Albright, D., Meisner, B.N., 1999. Classification of fire simulation
systems. Fire Management Notes 59 (2), 5–12.

Alfredsen, K., Sæther, B., 2000. An object-oriented application
framework for building water resource information and
planning tools applied to the design of a flood analysis
system. Environmental Modelling and Software 15 (3),
215–224.

Alonso-Sanz, R., 2007. A structurally dynamic cellular automaton
with memory in the triangular tessellation. Complex Systems
17, 1–15.

Ameghino, J., Tróccoli, A., Wainer, G., 2001. Models of complex
physical systems using Cell-DEVS. In: Annual Simulation
Symposium (ANSS’01), Seattle, U.S.A, pp. 266–273.

Balbi, J.H., Santoni, P.A., Dupuy, J.L., 1998. Dynamic modelling of
fire spread across a fuel bed. International Journal of Wildland
Fire 9 (4), 275–284.

Balzter, H., Braun, P.W., Kohler, W., 1998. Cellular automata

models for vegetation dynamics. Ecological Modelling 107,
113–125.

Barros, F.J., 1997. Modelling formalisms for dynamic structure
systems. ACM Transactions on Modelling and Computer
Simulation 7 (4), 501–515.

i n g
224 e c o l o g i c a l m o d e l l

Barros, F.J., Mendes, M.T., 1997. Forest fire modelling and
simulation in the DELTA environment. Simulation Practice
and Theory 5 (3), 185–197.

Baveco, J.M., Smeulders, A.M.W., 1994. Objects for simulation:
smaltalk and ecology. Simulation 62 (1), 42–57.

Berjak, S.G., Hearne, J.W., 2002. An improved cellular automaton
model for simulating fire in a spatially heterogeneous
Savanna system. Ecological Modelling 148, 133–151.

Bolduc, J.S., Vangheluwe, H., 2002. Expressing ODE Models as
DEVS: Quantization Approaches. AI, Simulation and Planning
in High Autonomy Systems. SCS, Lisboa, Portugal, pp. 163–
169.

Coleman, J.R., Sullivan, A.L., 1996. A real-time computer
application for the prediction of fire spread across the
Australian Landscape. Simulation 67 (4), 230–240.

Coquillard, P., 1995. Simulation of the cyclical process of
heathlands: induction of mosaic structures, evolution to
irreversible states. Ecological modelling 80, 97–111.

Dolling, K., Chu, P.-S., Fujioka, F., 2005. A climatological study of
the Keetch/Byram drought index and fire activity in the
Hawaiian Islands. Forest Ecology and Management 133, 17–27.

Dong Hyun, K., Myung Bo, L., Kyo Sang, K., Si Young, L., 2006.
Forest fire risk assessment through analyzing ignition
characteristics of forest fuel bed. Forest Ecology and
Management 234, S31.

Finney, M.A., 1995. FARSITE Fire Area Simulator Version 1.0 user
guide and technical documentation. Missoula, MT.

Hargove, W.W., Gardner, R.H., Turner, M.G., Romme, W.H.,
Despain, D.G., 2000. Simulating fire patterns in heterogeneous
landscapes. Ecological Modelling 135, 243–263.

Hernández Encinas, S. Hoya White, Martin del Rey, A., Rodriguez
Sanchez, G., 2007. Modelling forest fire spread using hexagonal
cellular automata. Appl. Math. Model. 31, 1213–1227.

Hill, D., Coquillard, P., Vaugelas, J.D., Meinez, A., 1998. An
algorithmic Model for Invasive Species Application to
Caulerpa taxifolia (Vahl) C Agardh development in the
North-Western Mediterranean Sea. Ecological Modelling 109,
251–265.

Holst, N., Axelsen, J.A., Olesen, J.E., Ruggle, P., 1997.
Object-oriented implementation of the metabolic pool model.
Ecological Modelling 104, 175–187.

Karafyllidis, I., Thanailakis, A., 1997. A model for predicting fire
spreading using cellular automata. Ecological Modelling 99,
87–97.

Lawrie, J., Hearne, J., 2007. Reducing model complexity via output
sensitivity. Ecological Modelling 207 (2–4), 137–144.

Lopes, A.M.G., Cruz, M.G., Viegas, D.X., 2002. FireStation—an
integrated software system for the numerical simulation of
fire spread on complex topography. Environmental Modelling
& Software 17 (3), 269–285.

McArthur, A.G., 1966. Weather and grassland fire behaviour.
Australian Forest and Timber Bureau Leaflet 100.

Miller, J.D., Yool, S.R., 2002. Modeling fire in semi-desert
grassland/oak woodland: the spatial implications. Ecological
Modelling 153, 229–245.

Muzy, A., Aïello, A., Santoni, P.-A., Zeigler, B.P., Nutaro, J.J.,
Jammalamadaka, R., 2005a. Discrete event simulation of
large-scale spatial continuous systems. In: International
Conference on Systems, Man and Cybernetics (SMC), IEEE,
Hawaii, USA, pp. 2991–2998.

Muzy, A., Innocenti, E., Hill, D., Santucci, J.F., 2003. Optimization
of cell spaces simulation for the modelling of fire spreading.
In: 36th Annual Simulation Symposium, Orlando, USA,
IEEE/SCS/ACM, pp. 289–296.
Muzy, A., Innocenti, E., Hill, D.R.C., Aïello, A., Santucci, J.F.,
Santoni, P.A., 2004. Dynamic structure cellular automata in a
fire spreading application. Chosen as on of the best papers of
the conference. In: First International Conference on
2 1 9 (2 0 0 8) 212–225

Informatics in Control, Automation and Robotics, Setubal,
Portugal, IEEE/CSS/IFAC/ACM/AAAI/APPIA, pp. 143–151.

Muzy, A., Innocenti, E., Wainer, G., Aïello, A., Santucci, J.F., 2005b.
Specification of discrete event models for fire spreading.
Among the 50 most-frequently-read articles in SIMULATION.
SIMULATION: Transactions of the Society of Modeling and
Simulation International 81, 103–117.

Muzy, A., Nutaro, J.J., 2005. Algorithms for efficient
implementation of the DEVS & DSDEVS abstract
simulators. In: 1st Open International Conference on
Modeling and Simulation (OICMS), Clermont-Ferrand, France,
pp. 273–279.

Muzy, A., Zeigler, B.P., 2008. Introduction to the activity tracking
paradigm in component-based simulation. The Open
Cybernetics and Systemics Journal 2, 48–56.

Norby, R.J., Ogle, K., Curtis, P.S., Badeck, F.-W., Huth, A., Hurtt,
G.C., Kohyama, T., Peñuelas, J., 2001. Aboveground Growth and
Competition in Forest Gap Models: an analysis for studies of
climatic change. Climatic Change 51 (3/4), 415–447.

Ntaimo, L., Zeigler, B.P., 2005. Integrating Fire Suppression into a
DEVS Cellular Forest Fire Spread Model. In: Spring Simulation
MultiConference, San Diego, CA, USA, pp. 48–54.

Núñez-Regueira, L., Proupín-Castiñeiras, J., Rodríguez-Añon, J.A.,
2000. Design of risk index maps as a tool to prevent forest
fires in the hill-side zone of Galicia (NW Spain). Bioresource
Technology 73, 123–131.

Núñez-Regueira, L., Rodríguez-Añon, J.A., Proupín-Castiñeiras, J.,
2001. Calculation of biomass indices as a tool to fight forest
fires. Thermochimica Acta 378, 9–25.

Nutaro, J., 2003. Parallel Discrete Event Simulation with
Applications to Continuous Systems. University of Arizona,
Tucson.

Nutaro, J., Zeigler, B.P., 2007. On the stability and performance of
discrete event methods for simulating continuous systems.
Journal of Computational Physics 227 (1), 797–819.

Papajorgji, P., Beck, H.W., Braga, J.L., 2004. An architecture for
developing service-oriented and component-based
environmental models. Ecological Modelling 179 (1), 61–
76.

Parker, D.C., Manson, S.M., Janssen, M.A., Hoffmann, M.J.,
Deadman, P., 2003. Multi-agent systems for the simulation of
land-use and land-cover change: a review. Annals of the
Association of American Geographers 93, 314–337.

Ralston, A., Rabinowitz, P., 2001. A First Course in Numerical
Analysis. Dover Publications.

Richards, G.D., 1990. An elliptical growth model of forest fire
fronts and its numerical solution. International Journal of
Numerical Method Engineering 30, 1163–1179.

Rothermel, R.C., 1972. A Mathematical Model for Predicting Fire
Spread in Wildland Fuels. USDA, Forest Service Research.

Santoni, P.A., 1996. Forest fire propagation: dynamic modeling
and numerical resolution, validation on fuel bed fires (in
French). Faculté des Sciences et Techniques. Corti, Università
di Corsica.

Sequeira, R.A., Sharpe, P.J.H., Stone, N.D., El-Zik, K.M., Makel, M.E.,
1991. Object-oriented simulation: plant growth and discrete
organ to organ interactions. Ecological Modelling 58, 55–89.

Sibony, M., Mardon, J.C., 1988. Approximations et équations
différentielles. Hermann.

Silvert, W., 1993. Object-oriented ecosystem modelling. Ecological
Modelling 68, 91–118.

Spanou, M., Daoyi, C., 2000. An object-oriented tool for the
control of point-source pollution in river systems.
Environmental Modelling and Software 15 (1), 35–54.
Thompson, W.A., Vertinsky, I., Schreier, H., Bruce, A., Blackwell,
B.A., 2000. Using forest fire hazard modelling in multiple use
forest management planning. Forest Ecology and
Management 134, 163–176.

g 2 1

V

V

V

W

W

Paradigm for Modeling Complex Adaptative Systems.
Adaptation and Evolution (festschrift for John H. Holland). E.
e c o l o g i c a l m o d e l l i n

asconcelos, M.J., 1993. Modeling spatial dynamic ecological
processes with DEVS-scheme and geographic information
systems. Arizona, p. 169.

asconcelos, M.J., Pereira, J.M.C., Zeigler, B.P., 1995. Simulation
of fire growth using discrete event hierarchical
modular models. EARSeL Advances in Remote Sensing 4 (3),
54–62.

each, M.S., Coddington, P.D., Fox, G.C., 1994. BURN: A Simulation
of Forest Fire Propagation. Northeast Parallel Architectures
Center.
eber, R.O., 1990. Modelling fire spread through fuel beds.
Progress in Energy and Combustion Science 17, 67–82.

u, J., David, J.L., 2002. A spatially explicit hierarchical approach
to modelling complex ecological systems: theory and
applications. Ecological Modelling 153, 7–26.
9 (2 0 0 8) 212–225 225

Wu, Y., Sklar, F.H., Gopu, K., Rutchey, K., 1996. Fire simulations in
the Everglades Landscape using parallel programming.
Ecological Modelling 93, 113–124.

Yassemia, S., Dragićević, S., Schmidt, M., 2008. Design and
implementation of an integrated GIS-based cellular automata
model to characterize forest fire behaviour. Ecological
Modelling 210, 71–84.

Zeigler, B.P., 2005. Discrete Event Abstraction: An Emerging
Oxford Press, Santa Fe Institute.
Zeigler, B.P., Praehofer, H., Kim, T.G., 2000. Theory of Modelling

and Simulation. Academic Press.

	Modeling and simulation of fire spreading through the activity tracking paradigm
	Introduction
	Material and methods
	Forest fire modeling
	Activity tracking framework
	Dynamic structure cellular automata (DSCA) specification

	Fire spread application
	The physics-based model
	Discrete-time solutions
	Explicit solution
	The implicit solution
	Dynamic structure cellular automata solution
	Quantization solution

	Simulation results
	Particularity and validation of the different methods
	Quantization method
	Dynamic structure cellular automata
	Implicit method in dynamic structure cellular automata
	Explicit method in dynamic structure cellular automata

	Discussion
	Conclusions
	References

