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Abstract. The probability imaging technique applied to double stars speckle data is presented within the framework
of a new approach, giving more directly the intensity ratio and relative position of the components. The twofold
probability density function is used for this purpose. A theoretical model is developed, pointing out a relevant quantity
deduced from the twofold probability density functions of the binary system and a nearby reference star. A method
using this quantity is proposed to reconstruct the binary system, together with a reference-less version of it. The
practical implementation of the method is tested for limiting cases and is improved by numerical simulations. Making
use of the resulting procedure, intensity ratios and relative positions of the components are obtained for three close
binary stars: 3 Del, Moai 1 and ~ Per.

Key words: Methods: data analysis Techniques: image processing Techniques: interferometric  binaries: close
Stars: imaging — Stars: individual: 3 Del — Stars: individual: Moai 1 — Stars: individual: 4 Per.

1. Introduction

An alternative to the usual computation of moments in the different speckle interferometry techniques (Labeyrie 1970,
Knox & Thompson 1974, Weigelt 1977) is the analysis of the probability density functions (PDFs) at several points in
space of the speckle pattern, describing the joint-occurrence of given intensities at several spatial locations.

The interest of such an analysis, done within the probability imaging (P1) technique (Aime 1987), is that it permits
a complete description of the statistical properties of the random images, and it contains more information than any
moment analysis (at a given order) and should therefore allow a better speckle imaging reconstruction. The drawback
of this technique is that there is no simple separation between a function that depends on the object alone and a
function that is relevant to the point-source spread speckle pattern in the result, as in the moment analysis. This
makes calibration of the results difficult.

We present here a new practical implementation of the PI technique well suited for the image reconstruction of
binary systems from visible speckle interferometry data. In that sense, this technique is to be compared to other
binary-star-oriented techniques, such as the Directed Vector Autocorrelation (Bagnuolo et al. 1992) combined with
the fork algorithm, that can be used for binary stars speckle data (Bagnuolo et al. 1990); or to the more recent cross-
correlation method proposed by Aristidi et al. (1996), if coupled to the fork algorithm or to the present () function
computation.

This paper follows the work of Carbillet et al. (1996a) who first obtained—using the PI technique—quantitative
results suitable for astrophysical interpretations, from one-dimensional near-infrared data. While the previous approach
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was parametric and made use of minimization techniques, the present one gives the information required from the
binary stars data more directly.

The paper is organized as follows. The problem of imaging a binary star by using PDFs is exposed in Sec.2. A
theoretical model of the PDFs that leads to a relevant quantity is exposed in Sec. 3, together with the procedure using
it as a tool for speckle imaging. A proposal to get rid of the use of a reference star is described in Sec. 4. Numerical
simulations done in order to test the validity and limits of the method are presented in Sec. 5. An application to real
data of the binaries 3 Del, Moai 1 and ~ Per is performed in Sec. 6. A discussion of the work (including further planned
applications) is given in Sec.7, and a conclusion in Sec. 8.

2. Imaging a binary star by using PDFs

A binary system, for which none of the stars is individually resolved by the telescope, is the most simple object that
can be considered for image reconstruction. Its perfect image is made of two points of intensities I; and Iy, separated
by a vector of position d corresponding to the angular separation.

Let us denote as S(r) the instantaneous monochromatic speckle pattern produced at the focus of the telescope by
a point-source (i.e. a single star unresolved by the telescope, or a reference star). S(r) is therefore the point-spread
function (PSF) if one considers a unit mean intensity. Assuming isoplanatism, the observed binary star speckle pattern
B(r) can be written as:

Y

1+«

Bry=L S(r)+ L S(r—d)=1I (L S(r)+

1+a S(T_d))’ (1)

where: a = I, /I, and Iy is the intensity of the binary system corresponding to its overall magnitude.

The relevant information for the imaging of the binary is contained in the three parameters Iy, I» and d, or
equivalently in the three parameters Iy, o and d. Unless very accurate photometry is performed, we cannot, access the
absolute value of Iy, so the imaging parameters to retrieve are o and d. Whereas d (or equivalently —d) and the value
(greater or not than 1) of a give a point in the orbit of the binary, an accurate value of a leads to relative photometry
of the system. The object of our analysis will be therefore to obtain with no ambiguity d and «. Let us now show how
an analysis of the PDFs can achieve this goal.

Let us first denote ; the intensity value taken by I(7) and Qs that of I(r + p), where I(r) describes the intensity
distribution in the speckle pattern at a position r, and p is a space-lag. As we assume stationarity in space, the
second-order statistics of I(r) are completely defined (Lee 1960) by the twofold PDF PR (Q, Qs p).

The quantity P(z)(Ql, Qy; p) dQ; dSy measures the probability that I(r) has an intensity value lying in the ele-
mentary interval {Q, Q +d€; } while I(r + p), of the same speckle pattern, has an intensity value lying in the interval

{2, +dQ ).

As discussed by Aime et al. (1990), there is a strong difference between twofold pPDFs of speckle patterns produced
by a point-source and a binary star. For a given value of p, the observed PDFs appear as joint occurrence histograms
of the discretized values ; and ., and can be represented as gray-level images. As we shall see in what follows, the
twofold PDF of a point-source has an overall symmetrical structure in £2; and 2, whatever the value of p. Whereas
for p close to the star separation vector d of the binary, the corresponding twofold PDF of the double star speckle
pattern has an arrow-head shape with a trend towards a direction Q5 = af2y. There is a unique relationship between
the shape of the twofold PDF and .

Carbillet et al. (1996a) presented a calibration procedure that uses a parametric approach leading to an estimation
of the two parameters d and « from one-dimensional near-infrared speckle data. We present here a new approach
that is found to give better results for two-dimensional visible speckle data. The separation d (modulus of d) and the
position angle PA (with a 180°quadrant indetermination) need within the present framework to be determined by the
by now classical power spectrum analysis and visibility function calculus of Labeyrie’s technique. We will now focus
on the most accurate way possible of determining o (and the absolute quadrant) by using an analysis of the PDF’s
slices computed for p = d (or equivalently p = —d).
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3. Theoretical Model
3.1. General expressions

Let us first recall the definition of the single-fold characteristic function (CF) @(Il’](w) of I(r), the intensity at the

focus of the telescope that can be either the psr S(r) or the binary star speckle pattern B(r). <I>(11) (w) is the complex
function of the real variable w defined as:

<I>(1]) (w) = E[exp {iwl(r)}] = /exp {iw2} P}])(Q) A, (2)

where the symbol Fle] denotes the expected value of e, and PI(U(SZ) is the single-fold PDF  and the inverse Fourier

transform of <I>91) (w).
By generalizing Eq. 2 to two dimensions, we can derive the twofold CF of I(r):

<I)(12) (w1, we; p) = E[exp {tw I(r) + w2 I(r + p)}]. (3)
On substituting S(r) to I(r) in the above equation, we directly obtain the twofold CF of the PST as:

) (wy.ws: p) = Eexp {iwy S(r) + iwzS(r + p)}] (4)
while, if I(r) represents the binary star speckle pattern B(r), Eq.3 takes the following form:

@g) (w1, we; p) = E[exp {iw1 B(r) + iw,B(r + p)}]

= E [exp {iw1 T S(r) + w1 25.8(r — d) + iwa 5 S(r + p) + i iz S(r—d + p) |

In the particular case when p is equal to the star separation d, this last equation becomes:

. / 1 o1
@(L?) (wi,we; p=d)=E [oxp {iu:l 1 i aS(T —d)+iws T aS(T +d) + i(wy + aws) T a S(r)}] . (6)

As shown by Aime et al. (1993), this expression can be written as a central slice of the threefold cF of S(r). A much
simpler expression can be used if we assume that the separation d is large with respect to the speckle size s, so that
S(r), S(r —d) and S(r + d) are statistically independent from one another. In that case, assuming that the process
is stationary in space, the twofold Cr reduces to the product of single-fold crs of S(r):

) . (7)

PR(Q,Q; p=d) = d+a) [pgw (H—”Ql) pYY ((1+Q)Q2)] [pgw ((1+a)y) §(afy —92)] , (8)

&3 x

) ( .1 1 a
@g’(wl,wz; p=d)= CI)? ((wl + aws) I 0’) @gl) (wz 1-1-—0) <I>gl) (wl T

By Fourier-inverting this last equation, it leads to (Aime 1993):

where x stands for a two-dimensional convolution and ¢ is the Dirac distribution.

3.2. Gaussian model

We shall now assume that the complex amplitude of the wave at the focus of a large telescope is a circular Gaus-
sian process, i.e. real and imaginary parts of the wave are independent and have identical Gaussian densities. This
corresponds to a fully developed speckle pattern. In that case, the intensity of the pPsr  that we defined with mean
intensity equal to one —follows the well known negative exponential law:

Pél)(SZ) =exp{—Q}. (9)

By substituting this last equation into Eq.8, one obtains the twofold PDF in the normal case (Aime 1993). In the
present, paper, we shall write this expression as:

N3 3 )
Pg)(Q],Qz; p=d) = Mexp {—(h + Qz)}exp{— (% +0Q2)} [exp{l—i—a Min <Q1, ! 2) } — 1] , (10)

14 a3 / a
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Fig. 1. Gray-level representation of the theoretical twofold PDF of a binary star computed for (p.,py) = (dy,dy) and o = 1.5
(a), the twofold PDF of a point-source (b), and the corresponding @ function (c).

where we have underscored the term exp{—(£2; + {22)} that corresponds to the twofold PDF of the psr, within the
assumption of statistical independence used to deduce Eq.7 from Eq.6. In that case, the twofold PDF of the binary
star appears as the product of the twofold PDF of the psk and a function denoted as Q(€2;,Q2), and defined as the
following ratio:

P (01,90 p=d)
P& (.0 p)

Q(,Q) = (11)

As we shall see in the following, the function Q(€;,€s) makes it very easy to recover the value of a. This is

illustrated in Fig. 1 that shows the respective shapes of P(Z), Pg) and (), computed for the Gaussian model. From
these gray-level representations, one can immediately note how the information about «, already present in the twofold
PDF of the binary, is tremendously enhanced in the @ function.

Let us now describe how the information about « is present in this function. We can write Eq. 11 as:

1+a) 0 1+a Q.
Q0 = B L (4 0 ) U e L i (0, 2 V] (12)
14 a3 o o o

The shape of this function is mainly given by the first term inside brackets. The quantity Min (Q] , %1) present in this
first exponential divides the (24, 2) plane of @ into two regions, with a delimiting ridge of slope Qs = af);.

3.3. Radial integrations

+ @) , +4 (b) o ©
1.2 ' 1.2 60
: : 1 50
0.8 . O.BK’/ "
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0.4 X 0.4 20
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0.25 0.5 0.75 1 1.25 1.5 0.25 0.5 0.75 1 1.25 1.5 0 0.25 0.5 0.75 1 125 15
B a—arctan a B ax=arctan o

Fig. 2. Plots of the analytical radial integrations for the theoretical twofold PDF of a binary star computed for (pe, py) = (de, dy)
and « = 1.5 (a), the twofold PDF of a point-source (b), and the corresponding @ function (¢). These plots precisely correspond
to the gray-level representations shown in Fig. 1.
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An easy way to detect the ridge described previously, and shown in Fig.1 for @ = 1.5, is to radially integrate the @
function in the (24, ) plane. Analytically, this operation can be written as:

maz

Io(0) = Q(ncosb,nsind) dn (13)
0

where: I(0) is the radial integration of Q, Q; = ncosf, Qy = nsinb, Nmq, is the maximum value of 1, L.e.: Nmae =

Mar(cos b mnd) with 4, the actual maximum value of intensity determined by the practical binning. We can first

consider the ideal case where 7,4, — o0. Then IQ(H) becomes:

1 1
cosf + a2 sinf — (1 + a®)Min(cos 0, s28) ~ cosf+a?sinf |’

. 0{(1 + 0{)3
Io®) = =25

(14)

Here again, the main part of Iy(#) comes from the first term, the second one being almost negligible compared to it.
Moreover, the quantity Min(cos#, i“a—le) divides the axis of # into two regions, causing the relevant behavior:

1g(#) = oo for # = arctana (15)
This is due to the fact that Q(1,Qy) rapidly converges to (1135 for Qy = af); (that corresponds to 6 = arctana),
and as {29 increases. This general behavior will allow us easily to find the exact value of a by searching for the infinite
maximum of Ig(9).

In practice, we have to consider that 7)y,q, has a finite value. In that case the value of Io(#) becomes finite too,
but the main figure is kept: I(6) has a very clear maximum for the right value o = tané of the intensity ratio of
the binary star. Figure 2 shows Io(0) compared to the radial integrations performed on the twofold pDF of the psr
and on the twofold PDF of a binary star speckle pattern. As one can see from these plots, the maximum of both the

radial integrations of P;-j,z) and @ gives the value of o, but the maximum of @ is ~ 30 times higher (for the present
case where Ipnq, = 19) and much better defined.

4. Avoiding the use of a reference star

Fig. 3. Top: gray-level representation of the theoretical twofold PDF of a binary star computed for (paypy) = (du, dy) (a), the
twofold PDF of same binary computed for (p.,py) L (de,dy) (b), and the corresponding @ function (c).

The use of a reference star is generally needed in speckle interferometry to correct the quantity computed from
atmospheric effects. We saw for instance in the previous sections that we derive ) computing the ratio of the twofold
PDF of the binary star and the twofold PDF of the PSF (even if in this case this does not exactly correspond to a
complete correction of the atmospheric effects). Nevertheless, since seeing conditions can rapidly change (Coulman
1985), the twofold pDF of the Psr can be badly estimated from the observation of a reference star. In that case, it can
be useful to avoid the use of the reference star data. This can be done by using the present technique.

We have considered so far the twofold PDF of a binary star just for the space-lag vector p equal to the separation
vector d, i.e. when the information about the binarity of the object is maximum. Let us now consider the inverse case,
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i.e. the case for which ; and )y are uncorrelated. Within the model assumed here, this occurs whenever p # d and
p # 0. In practice, and considering the effects due to the real extension of the speckle pattern, we chose to consider the
particular vector p L d (with the length p = d), for which on the one hand €y and 2, are supposed to be uncorrelated,
and on the other the effects due to the low frequencies present in the speckle pattern are supposed to be similar.

Considering again Eq. 5, we have S(r), S(r — d), S(r + p) and S(r — d + p) that are still statistically independent
from one another, all the more so because d, p and |p — d| are large in comparison to s. Assuming again that the
process is stationary in space, we can write:

(2) . Ny 1 (1) o (1) 1 (1) a
O (wi,we; p L d)= Dy (wl m) (38 <w1 m) 38 <w2 T a) 38 <u:2 o a) . (16)

Taking the same kind of assumption as in Sec. 3 and following the same process, leads to:

- 2 —
P20 p L d)= T T (L (14 a)(Q + Q) — exp {—(1 4+ a)( + 21

(1—ay
—exp {—(14a) (B 4+ Qo) } +exp { —1E2(Q) + Q)] if o #£1 (17)
P (921,005 p L d) = 16 2 exp {—2(2; + )} ifa=1
As in Sec. 3 one deduces from these quantities that:
P, Q: p Ld) = PP (0, Q: p) U, Qy), (18)
where:
U(Q,Q) = % [exp {—é(fh + QZ)} — exp {—(% + OJQZ)}
—exp {—(a + 2)} +exp{—a(@ + %)} HaFl (19)
U(,Q2) =16 % exp{—(21 + )} if o =1.

From Eq. 18 and Eq. 11, we can deduce a relationship between the twofold PDF of a binary star computed for p = d
and computed for p L d:

Pg}(QhQ% p=d)= P](;)(.Ql,Qz; pLd) Q(Q.),
(20)
where : Q(1, Q) = Q(,9Q2)/U(Q1, Q).

This last relationship is valid as long as U(£2, Q) is not zero, i.e. for ; # 0 and Q2 # 0 (if @ # 1). Let us now show
that Q has the same kind of behavior and interest as ). Figure3 illustrates the relationship given in Eq. 20, like in
Fig. 1. The twofold PDF of the binary star speckle pattern computed for p L d appears very similar to the twofold PDF
of the psF, and the above defined () clearly shows the same kind of form as ). The result is a little less impressive
than in Fig. 1, but applications to simulated and real data can lead to an equivalent result. As we shall confirm in
what follows, the method suggested in this paper can be used with or without reference star to correct for atmospheric
effects (the two versions of the method will be called from now the standard version and the reference-less version).
In the next section we shall among other test the validity of this statement by doing some numerical simulations.

5. Numerical simulations

We assumed in writing the equations in the previous sections that d > s, i.e. the separation between the components
d is large with respect to the speckle size s. In practice, the interesting point for observations is when d 2 s, since
the aim of every speckle imaging technique is to reach as close as possible the diffraction-limited resolution of the
telescope. Then, in order to complete the theoretical study and test the validity and limits of it for practical speckle
observations, we chose to make several numerical simulations with different values of d and «. We decided not to
report all these simulations in this paper but just the most interesting ones, i.e. for a separation d = % s, and for three
different relevant values of .
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5.1. Practical implementation of the method

The functions () and @ are respectively obtained by dividing the twofold PDF of the binary star computed for p = d
by that of a point-source, and by that of the binary computed for p L d. In order to avoid zero divisions during this
operation, we made use of an iterating algorithm based on Van Cittert (1931) and already applied to speckle data
by Cruzalebes et al. (1996). The output estimate of this algorithm perfectly converges to the solution of the normal
division after an infinite number of iterations. Let be A = (E If |C| « 1 the calculation of A may rapidly diverge. One
estimate of A can then be:

A4,=B > (1-0). (21)

=0

Because Ezo(l — C)i = % it is easy to demonstrate that lim, ., 4, = A. In the case where the denominator C'
becomes smaller than the limit for which the machine cannot see the difference between 1 and 1 4+ C, we found that
it is typically sufficient to perform about ten iterations to estimate the ratio. In the other case, we simply calculated
the ratio by normal division.

We also computed the quantity Q — Q" to enhance the relevant ridge, where Q7 is the transpose quantity of Q.
The radial integration of this quantity In_gr is related to Ig by:

Mmas ,
Ig_or = /0 [Q— Q"] (ncost,nsind) dn = Ig(0) — Ipr (9) = In(0) — IQ(% —0). (22)

So its ideal expression (i.e. when 7,4, — 00) follows:

Ig_gr(f) = oo if § = arctana.
(23)

1
IQ,QT (9) — —o¢ if 6 = arctan — = — — arctana.

«

ro| =

In the present case 1,4, is obviously finite and the general behavior of IQ,QT(Q) is to have a maximum for the
right value of «, like I(#), but a minimum too for i For such a quantity the extrema are better defined. A second
interest is that it could stand out better between a value of « close to but greater than 1 and a value of « close to but
smaller than 1.

In practice, to estimate Q7, we did not directly make use of Q. We computed {(Pg) )T/P?)} in order to have two

2)

different estimates (as Pg”’ is determined experimentally) of the intensity ratio when analyzing the quantity @ — QT:
one corresponding to the maximum of the radial integration, and one to the minimum. The output values of ¢ are
then averaged from these two estimates, together with the corresponding errors.

In addition, and in order to get rid of the effect of statistical fluctuations and to keep only the most significant
features, we also smoothed the @, Q, Q—Q" and (;) — (;)T estimates by convolving them by a 3 x 3 unit valued filter.

We consider only the part of the computed quantities @, @ Q- QT and (? — QT where the signal-to-noise ratio
is the best, i.e. where there is a significant number of events in the twofold PDFs of the reference and the binary star.
This typically corresponds, in our present case, to an extraction of 32 x 32 pixels near the origin for PDFs computed
with a sample of the intensity of 256 levels.

5.2. General case

The simulation work presented in this subsection made use of two data sets (one for the binary star and one for the
point-source), each made of 100 speckle frames of 128 x 128 pixels, simulated with the following parameters:

— observing wavelength : A = 6500 A,

— Fried’s parameter: ry = 20 cm,

— telescope diameter: D = 2m,

— speckle size: s = 3 pixels,

— separation vector for the binary: d = (43, +4) pixels = d = 5 pixels,

— intensity ratio between the components: o = 1.5.

In Fig. 4 we represent the PDFs obtained for the point-source for p = d, and for the binary for p = d and for p L d.

The functions () and Q are deduced from this, and represented together with their radial integrations. The functions
Q — QT and Q — QT are represented as well with their radial integrations.
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. point-source
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Fig. 4. Top, first row: logarithmic gray-level representation of the twofold PDFs computed for the simulation made for o« = 1.5
and (d.,d,) = (+3,+4). Top, second row: linear gray-level representation of the corresponding Q, Q@ — QT Q and Q — Q"
functions. The white squares show the 32 x 32 extraction zone used for the computation of the radial integrations. Bottom:
extraction of Q, Q, Q@ — Q7 and Q — Q7, together with their respective radial integrations. Its extrema are outlined by dashed
lines.
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The procedure to quantitatively find the extrema of these radial integrations and to estimate the respective errors
makes use of a polynomial fit of these quantities around the extrema. We chose for this purpose to fit the +2.5°
region surrounding the extrema by a polynomial of the second degree, since close to its maximum a convex function
is supposed to have a quadratic-like behavior.

| input « | input 6 || Q | Q-07 || Q | Q-0Q7 |
| 1.5 ] 5631 ][ 54.85+£0.60 [ 56.40 £ 0.50 || 54.80 £ 0.60 | 56.35 £ 0.50 |
10 84.29 = 80 83.80 £0.70 = 80 83.70 £ 0.60
1.01 45.28 || 45.25£0.95 > 45 44.90 £ 0.80 > 45

Table 1. Values of 8 (and corresponding intrinsic errors Ad) found for the numerical simulations.

The values of # = arctana found from the four quantities I(0), 15(0), Ig-qr(¢) and I5_5r(#) are reported in

the first row of Table1. The values found for () and Q are rather less than the input Value of #. This means that
there is a systematic error in detecting the right value of « from the maximum of I and 5. However this systematic
error is not present, or at least in a very small way, in the case, not presented in this paper, where the separation d is
actually large with respect to s. Nevertheless, this systematic error is avoided by considering the values of 8 found for
Q—QT and Q— Q7. So while Q or Q gives us a first (but biased) estimate of 8, the computation of Q) — QT or Q-QT
then gives us a good value of it. The general procedure will be to consider directly Q — Q7 or @ — QT to estimate the
intensity ratio of a binary star. Finally, this method gives equivalent results by using it in its reference-less version or
in its standard version.

We made several numerical simulations in order to test the validity and limits of the method. This showed us that
two kind of limiting cases exist depending on a.

5.3. Limiting cases

0 10 20 3032

#Ela.aT (0) 48l [5(0)
QQ Q
5t ¥ 70
g: 2F @@ 30
2F 1 50
b o o
-1 E 1B 30F 20
b o o e | . ~ b(deg)
4 F 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 SO 90
o1 B 04l o7 () /\\ OISF/\ 5T (©) m
ot 6(deg) | , - 9(deg) 0 ‘ S
It It It It It
(‘) 1‘0 2‘0 3‘0 4‘0 55 éo 75 s‘o 9‘0 0 10 20 30 40 50 60 70 80 go _0.4t \\/ -0.15E W

Fig. 5. Left: linear gray-level representation of Q — QT and Q — Q7 for a = 10, together with the plots of I g7 (#) and
Iy g7 (). Right: linear gray-level representation of Q and Q — Q" for a = 1.01, together with the plots of I (), Ig_or(9),
I5(0) and I5 52 (0).



10 M. Carbillet et al.: Speckle imaging of binary stars: use of ratios of twofold probability density functions

In order to better test the limiting cases of the method, we chose to make the simulation with a larger number of
frames per set: 1000. The first limiting case is when « is large (or small) with respect to 1. This corresponds to a
large magnitude difference between the components of the binary star. This is already a well-known limit of speckle
observations but in our present case, this corresponds to a ridge of the () function close to the axis Q3 (or ), implying
then a difficult determination of the right value of a. We found, with the typical parameters taken here, that the useful
limit of the method is for @ ~ 10 (and for « ~ 0.1), i.e. for a magnitude difference of ~ 2.5. As shown in Table 1, second
row, the computations () and Q could only give an idea of #, and we deduce from Iy and I that 8 is greater than or
of the order of 80°. The estimate of 0 is still available from I g7 and I5_5r but gives a slight under-estimate.

The second limiting case is when « is close to 1. This problem occurs when the two components of a binary system
are of close magnitudes, implying then an ambiguity in the determination of the PA. In that case, the quantities
Q — QT and Q — QT become very small but still contain the information about the orientation of the binary, even if
the precise determination of « is no longer possible. Nevertheless, () and Q can in this case give a good estimate of
it, as shown in Table 1, third row, where we report the result of a simulation made for o = 1.01 (i.e. for a magnitude
difference of ~ 0.01).

Figure5 illustrates the procedure used to analyze these two limiting cases. In the first case (o = 10), 6 is directly
determined from the extrema of Io_gr or IQ—QT' In the second (a = 1.01), ¢ is determined from Iy and IQ and
the orientation is checked from I_gr or I5_asr. An interesting case is presented by the reference-less version of the
method. In fact, while I 5 shows a maximum for # slightly smaller than 45°(but with an error large enough to include
the value 45°), the shape of I@_ ~r clearly denotes a value of 8 greater than 45°. In conclusion, a good estimate of «
can be found by using our method if the following procedure is performed:

1. Compute Q and Q.
2. If a is not close to 1: estimate it with I5_g7 or 15 5.
3. If a is close to 1: estimate it with I or I5 and check the orientation (i.e. check if 6 is greater or not than 45°) by
using Ig_oT or I@f@T.
An application of this procedure to real data of close visual binary stars is performed in the next section, together
with a comparison with the results found elsewhere.

6. Application to real data

Preliminary results obtained with the technique in its standard version were already presented elsewhere (Carbillet
et al. 1996b). We give here a more accurate application of the technique in its two versions to three binary stars for
which the observing conditions are reported in Table 2. All the data reduced in this section consist of high-light level
speckle frames of 128 x 128 pixels. We give in what follows a detailed description of the analysis for each object.

| star name | r.2.2000.0 | dec.2000.0 | mp || Telescope | A/AX | <7y > | At | Date |
3 Del 20737'30” | 14°36°00” | 3.2 2m BLT 6580/425 | ~20 cm | 20 ms | 11/09/94
Moal 1 03"49'36" | 63°17°52” 6 2m BLT 6500/700 | ~30 cm | 20ms | 12/12/95
~ Per 03"04'48” | 53°3024” | 2.3 4.2m wWHT | 6580/425 | ~20 cm | 25 ms | 19/01/95

Table 2. Observation table of the three sets of data processed in Sec. 6. The right ascension, the declination and the combined
magnitude in the red (mpr) are given, together with the telescope used (WHT = William Hershell Telescope, La Palma, Spain—
BLT = Bernard Lyot Telescope, Pic du Midide Bigorre, France), the observing wavelength /bandwidth in A, the approximate
average value of the Fried’s parameter ro, the exposure time and the date of observation.

6.1. B Del

The subgiant 3 Del is a close binary of 26.6 years of period given as a standard star for binary-star interferometry by
McAlister & Hartkopf (1983). The latest orbit is computed by Hartkopf et al. (1989). The reference star observed was
€ Del from which we used 410 frames, and 324 for the binary.

The separation angle d and the PA from which we derived an estimation of d were computed from the classical
calculation of the visibility function, founding: d = 0722 and P4 = 288°/108°.

Figure6, first row, shows both the quantities Q — QT and Q — QT, with their radial integrations I, ¢ and

14 _oT derived from the twofold PDFs of the binary and of the reference star computed for the space-lag vector p = d,

Q
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Fig. 6. Top: linear gray-level representation of Q — QT (a) and Q - QT (c), together with plots of the corresponding radial
integrations— (b) and (d) —for the binary 3 Del. Middle: @ (a) and @ (c), and the corresponding radial integrations— (b) and
(d) —for the binary Moal 1. Bottom: the same as in Top for the binary ~ Per.

and from the twofold PDF of the binary computed for p L d. From these quantities, we could deduce the value of
for which they are extrema by the procedure described in Sec.5. So we have: arctana = (23.85 £ 0.95)° using the
standard version; or: arctana’ = (24.5 & 1.5)° using the reference-less version. The exact value of the intensity ratio,
giving then both the orientation and a relative photometry of the binary system, is found to be @ = 0.440 £ 0.020 (or
a’ = 0.455 £ 0.030), that corresponds to a magnitude difference Am = 0.885 + 0.050 (or Am’ = 0.855 £ 0.070). This
is in agreement with the value given by Couteau (1962)— i.e. 0.9 —if one considers that Amy is roughly similar to
Amp for this object. Moreover, since we found an intensity ratio smaller than 1, we can assume, given the orientation
of the frames and p, that PA is 288°and not 108°. This is anyway what was expected from the orbit cited before.

It is interesting to note that the two versions of the method give, for these data, an equivalent result, even if the
relevant ridge seems to be better defined using the reference star data.

0.2. Moai 1

The close double star Moai 1 (SAO 12917) was discovered during the observation from which the data used in this
section are extracted. The approximate period evaluated by Carbillet et al. (1996¢) is ~ 13 years. The separation
vector d was deduced from this last paper using the cross-correlation technique (Aristidi et al. 1996). This corresponds
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to: d = 0”11 and PA = 213°. The reference star observed was SAQO 12929 from which we used 2617 frames, and 2619
for the binary.

Figure 6, second row, shows both the quantities ) and Q with their radial integrations Iy and I5. The value of
6 derived from these quantities is: arctana = (42.0 £ 2.0)°— or arctana’ = (41.5 + 3.5)°. The deduced value of o
is then: o = 0.900 £ 0.065 (or o = 0.90 & 0.10), that corresponds to a magnitude difference: Am = 0.115 £ 0.080
(or Am’ = 0.10 £ 0.10). This is in agreement with the value computed in the paper cited before and using both the
cross-correlation technique and the fork algorithm (Bagnuolo 1988) ]; = 1.110 £ 0.020 and 15 = 1.15+£ 0.15. The
position angle is then confirmed to be: PA = 213° and the magnitude difference between the companion and the
primary star in the red: Ampg ~ 0.1.

We can say that, here again, the method seems to take advantage of its use with the data of the reference star,
the reference-less method giving anyway an acceptable value of the intensity ratio.

6.3. v Per

~Per is a glant eclipsing binary star of 17.8 years period whose orbit can be found in Hartkopf et al. (1996). The
reference star observed was a Per from which we used 752 frames, and 443 for the binary. The separation and position
angle computed from the visibility function were: d = 0720 and PA = 62°/242°.

Figure 6, third row, shows both the quantities Q — QT and @ - QTW with their radial integrations I5_gr and
I5; &r. The value of 6 derived from these quantities is: arctana = (79.5 £ 1.0)°  or arctana’ = (80.0 &+ 1.5)°. The
deduced value of the intensity ratio is then: o = 5.40 + 0.50 (or o' = 5.70 & 0.90), that corresponds to a magnitude
difference: Am = —1.85 £ 0.10 (or Am’ = —1.90 & 0.15). This first shows that the right position angle is 62°and not
242°. Moreover, the absolute value of Am found is in agreement with the early speckle interferometric measurement
of Labeyrie et al. (1974) that estimated a Am of 1-2 mag for a wavelength of A = 6750 A. More precisely, McAlister
et al. (1982) estimated Am in the red to be at least greater than 1.4 mag, the estimated Amy.

7. Discussion

The method proposed in this paper to determine relative position and photometry of the components of a binary
system consists of calculating ratios of pDFs: the twofold PDF of the double star speckle pattern computed for a space-
lag p equal to the star separation is divided by the twofold PDF of an unresolved star, computed for the same space-lag
p- Alternatively, and in a case of lack of a good reference star, the twofold PDF of the binary speckle pattern itself,
computed for a space-lag p perpendicular to the star separation, may also be used as reference. The result, which is
described in the text as the () (or Q) function, clearly evidences the region of the (q,;) plane where Qy = a€;.
This procedure, in some aspects, solves the problem of the pI technique emphasized in the introduction of this paper,
i.e. the fact that it is a non-linear approach for which there is no simple separation between functions of the object
and of the speckle pattern. This pseudo-linear result was clearly illustrated in Fig. 1. Moreover, the use of a radial
integration gives directly the value of @ with no ambiguity on relative position of components.

Other representations may be considered to emphasize the dissymetry of the twofold PDF. For example, we have
noticed that the ratio of P to its transpose quantity P7 gave results similar to ) — Q. For the sake of conciseness,
these results are not reported here. In any case, since ratios are taken, a problem may arise when the twofold PDF used
as a reference is equal to zero. This is not a major problem, but rather the effect of insufficient statistics in terms of
number of samples. This problem could also be resolved if smoothed versions of twofold PDFs are used.

The ratio approach, even though we seek to obtain the linear relation discussed above, remains fully empirical. The
question may arise about the meaning of these twofold PDFs ratios in terms of theory of probability and statistics. The
ratio may be considered as the measure of some distance between probabilities, one bearing the information about the
double star embedded in the speckle pattern, and the other being relevant to the psr only. This approach is used in
empirical hypothesis testing; however, the use of a ratio is not a common measure of distance (Allen, 1990). Attempts
were made to use differences of PDFs instead of ratios (Lyon 1993), but the results were found to be less attractive
than the present ones.

Another possibility of a theoretical meaning for the ratio of PDFs is to refer to entropy and the information given
by PDFs. The information associated with an event is equal to minus the logarithm of the probability of that event.
The ratio we perform may be therefore linked to the difference between the information that comes from the law of
probability of the intensity of a binary star speckle pattern, and that of an unresolved star. A deeper development of
this approach, that we will not further develop here, would lead to the use of some Kullback-Leibler representation

(Taupin 1988), of the form Pg log (Pg/Ps).
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An alternative to the present method is to deal with CFs instead of PDFs. The division of the PDFs corresponds, in
the Fourier space, to a deconvolution of the CFs. Surprisingly, we found that a division of the CFs leads to a similar
result, since the Cr computed for the binary (and for its separation) presents a characteristic ridge as well, which is
also tremendously enhanced by dividing it by the CF of the psF. This is an interesting behavior that we plan to study
later.

The points discussed above are interesting problems of probability theory and signal processing, and will be
developed elsewhere.

Several developments of the method are possible. A first one consists of the treatment of low-light level data. In
this case, as discussed by Sultani et al. (1995), the PDF suffers a Poisson-Mandel transform that must be inverted.
However, preliminary checks made on simulated data have shown that the information about a was already clearly
visible in the ratio of low-light level PDFs. Another development is the extension of the procedure multiple stars. The
analysis of triple stars speckle patterns is currently under processing and the results will be given in a near future.

8. Conclusion

We have developed in this paper a data processing method suitable for extracting astrometric information, absolute
quadrant determination and relative photometry from speckle data of binary stars. The combination of classical
visibility /autocorrelation calculus and our @ function is proposed for this purpose. The results obtained for three
binary stars (with different order of magnitude differences and angular separations) are very promising, and we are
currently applying it as a routine analysis procedure for our speckle observations. The method being quite simple and
fast, it could rapidly lead to near real-time processing.
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