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THE FRESNEL DIFFRACTION :
A STORY OF LIGHT AND DARKNESS

Aime C., Aristidi E. and Rabbia Y.1

Abstract. In a first part of the paper we give a simple introduction to
the free space propagation of light at the level of a Master degree in
Physics. The presentation promotes linear filtering aspects at the ex-
pense of fundamental physics. Following the Huygens-Fresnel approach,
the propagation of the wave writes as a convolution relationship, the
impulse response being a quadratic phase factor. We give the correspon-
ding filter in the Fourier plane. As an illustration, we describe the pro-
pagation of wave with a spatial sinusoidal amplitude, introduce lenses
as quadratic phase transmissions, discuss their Fourier transform pro-
perties and give some properties of Soret screens. Classical diffractions
of rectangular diaphragms are also given there. In a second part of
the paper, the presentation turns onto the use of external occulters
in coronagraphy for the detection of exoplanets and the study of the
solar corona. Making use of Lommel series expansions, we obtain the
analytical expression for the diffraction of a circular opaque screen,
thereby giving the complete formalism for the Arago-Poisson spot. We
include there shaped occulters. The paper ends with a brief application
to incoherent imaging in astronomy.

1 Historical introduction

The question whether the light is a wave or a particle goes back to the seven-
teenth century when Newton proposed a mechanical corpuscular theory against
the wave theory of Huygens. Newton’s particle theory, which explained most of the
observations at that time, stood as the undisputed model for more than a century.
This is not surprising since it was not easy to observe natural phenomena where
the wave nature of light is absolutely required for explanation. At that time light
sources, like the Sun or a candlelight, are incoherent extended sources, while a co-
herent source is needed to see interference phenomenas, unquestionable signatures
of the wave nature of light.
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The starting point of the wave theory is undoubtedly the historical double
slits experiment of Young in 1801. The two slits are illuminated by a first slit
exposed to sunlight. The first slit was thin enough to provide the necessary spatially
coherent light. Young could observe for the first time the interference fringes in the
superposition of the diffraction patterns of the two slits, thereby demonstrating the
wave nature of light against Newton’s particle theory. Indeed, how the sum of two
particles could produce darkness in the fringes ? The dark strips on the contrary
are interpreted easily by vibrations that destroy one another. This argument was
very strong, and Einstein had to struggle in his turn to introduce the concept
of photons a century later. In astronomy, we can use the simplified semiclassical
theory of photodetection, in which the light propagates as a wave and is detected
as a particle (Goodman (1985)).

In Young ’s time, Newton’s stature was so strong that the wave nature of
light was not at all widely accepted by the scientific community. Fresnel worked
about fifteen years later on the same problems, at the beginning without being
aware of Young’s work. Starting from the Huygens approach, Fresnel proposed
a mathematical model for the propagation of light. He competed to a contest
proposed by the Academy of Sciences on the subject of a quest for a mathematical
explanation of diffraction phenomena appearing in the shade of opaque screens.
Poisson, a jury’s member, argued that according to Fresnel’s theory, an opaque
circular screen should give rise in the center of its shadow of a bright spot of the
same intensity as if the screen does not exist. The experiment was soon realized by
Arago, another jury’s member, who indeed brilliantly confirmed Fresnel’s theory.
This bright spot is now called after Poisson, Arago or Fresnel.

Arago’s milestone experience was reproduced during the CNRS school of June
2012, using material for students in Physics at the University of Nice Sophia -
Antipolis. The results are given in Fig.1. A laser and a beam expander are used to
produce a coherent plane wave. We used as occulter a transparent slide with an
opaque disk of diameter 1.5 mm, while Arago used a metallic disk of diameter 2
mm glued on a glass plate. Images obtained in planes distant of z =150, 280 and
320 mm behind the screen are given in the figure. The Arago bright spot clearly
appears and remains present whatever the distance considered. The concentric
circular rings are not as good as expected, because of the lack of quality of the plate
and the occulting disk, a difficulty already noted by Fresnel (see for example in
de Senarmont et al. (1866)). We give the mathematical expression for the Fresnel
diffraction in the last section of this paper.

The presentation we propose here is a short introduction to the relations of
free space propagation of light, or Fresnel diffraction. It does not aim to be a
formal course or a tutorial in optics, and remains in the theme of the school, for
an interdisciplinary audience of astronomers and signal processing scientists. We
restrict our presentation to the scalar theory of diffraction in the case of paraxial
optics, thus leaving aside much of the work of Fresnel on polarization. We show
that the propagation of light can be simply presented with the formalism of linear
filtering. The reader who wishes a more academic presentation can refer to books
of Goodman (2005) and Born & Wolf (2006).
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Figure 1. Reproduction of Arago’s experience performed during the CNRS school. Top

left : the occulter (diameter : 1.5 mm), and its Fresnel diffraction figures at the distances

of 150 mm (top right), 280 mm (bottom left) and 320 mm (bottom right).

The paper is organized as follows. We establish the basic relations for the free
space propagation in section 2. An illustration for the propagation of a sinusoidal
pattern is given in section 3. Fourier properties of lenses are described in section
4. Section 5 is devoted to the study of shadows produced using external occulters
with application to coronagraphy. Section 6 gives a brief application to incoherent
imaging in astronomy.

2 Basic relations for free space propagation, a simplified approach

We consider a point source S emitting a monochromatic wave of period T , and
denote AS(t) = A exp(−2iπt/T ) its complex amplitude. In a very simplified model
where the light propagates along a ray at the velocity v = c/n (n is the refractive
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index), the vibration at a point P distant of s is :

AP (s, t) = A exp

(
−2iπ

(t− s/v)

T

)
= A exp

(
−2iπ

t

T

)
exp

(
2iπ

ns

λ

)
(2.1)

where λ = cT is the wavelength of the light, the quantity ns is the optical path
length introduced by Fermat, a contemporary of Huygens. The time dependent
term exp(−2iπt/T ), common to all amplitudes, is omitted later in the presentation.
For the sake of simplicity, we moreover assume a propagation in the vacuum with
n = 1.

In the Huygens-Fresnel model, the propagation occurs in a different way. First
of all, instead of rays, they consider wavelets and wavefronts. A simple model for
a wavefront is to consider the position where all rays originating from a coherent
source have arrived at a given time. A point source irradiates a spherical wavefront,
which merges with a plane wavefront for a far away point source. Wavefronts
and rays are orthogonal, according to Malus theorem. Huygens-Fresnel principle
assumes that each point of a wavefront itself irradiates an elementary spherical
wavelet.

We assume that all waves propagate in the z positive direction in a {x, y, z}
coordinate system. Their complex amplitudes are described only in parallel planes
{x, y}, for different z values. If we denote A0(x, y) the complex amplitude of a
wave in the plane z = 0, its expression Az(x, y) at the distance z may be obtained
by one of the following equivalent equations :

Az(x, y) = A0(x, y) ∗ 1

iλz
exp

iπ(x2 + y2)

λz

Az(x, y) = =−1
[
Â0(u, v) exp(−iπλz(u2 + v2))

] (2.2)

where λ is the wavelength of the light, the symbol ∗ stands for the 2D convolution.
Â0(u, v) is the 2D Fourier transform of A0(x, y) for the conjugate variables (u, v)
(spatial frequencies), defined as

Â0(u, v) =

∫∫
A0(x, y) exp(−2iπ(ux+ vy))dxdy (2.3)

The symbol =−1 denotes the two dimensional inverse Fourier transform. It is
interesting to note the role of size factor played by the quantity

√
λz in Eq. 2.2.

We explain in the next section establishing these relationships and we detail their
consequences.

2.1 The fundamental relation of convolution for complex amplitudes

The model proposed by Huygens appears as a forerunner for the use of the
convolution in Physics. In the plane z, the amplitude Az(x, y) is the result of
the addition of elementary wavelets coming from all points of (x, y). To construct
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Figure 2. Notations for the free space propagation between the plane at z = 0 of

transverse coordinates ξ and η and the plane at the distance z of transverse coordinates

x and y.

the relations between the waves in these two planes, we will have to consider the
coordinates of points in the planes z = 0 and z. To make the notations simpler,
we substitute ξ and η to x and y in the plane z = 0.

Let us first consider a point source at the origin O of coordinates ξ = η = 0,
and an elementary surface σ of the wavefront around it. The wavelet emitted by
O is an elementary spherical wave. After a propagation over the distance s, the
amplitude of this spherical wave can be written as (α/s) σA0(0, 0)× exp(2iπs/λ),
where α is a coefficient to be determined. The term in 1/s is required to conserve
the energy.

Now we start deriving the usual simplified expression for this elementary wa-
velet in the plane of x and y at the distance z from O. Under the assumption of
paraxial optics, i.e. x and y � z, the distance s is approximated as

s = (x2 + y2 + z2)1/2 ' z + (x2 + y2)/2z (2.4)

The elementary wavelet emitted from a small region σ = dξdη around O (see
Fig. 2) and received in the plane z can be written :

A0(0, 0)σ × α

s
exp

(
2iπ

s

λ

)
' A0(0, 0) dξdη × exp

(
2iπ

z

λ

) α
z

exp

(
iπ
x2 + y2

λz

)
(2.5)

The approximation s ' z can be used, when s works as a coefficient for the
whole amplitude, since this latter is not sensitive to a small variation of s. On the
contrary the two terms in Eq. 2.4 must be kept in the argument of the complex
exponential, since it expresses a phase and is very sensitive to a small variation of
s. For example, as faint a variation as λ for s, induces a phase variation of 2π.

For a point source P at the position (ξ, η), the response is :
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dAz(x, y) = A0(ξ, η) exp
(

2iπ
z

λ

) α

z
exp

(
iπ

(x− ξ)2 + (y − η)2

λz

)
dξdη (2.6)

According to the Huygens-Fresnel principle, we sum the amplitudes for all
points sources coming from the plane at z = 0 to obtain the amplitude in z :

Az(x, y) = exp
(

2iπ
z

λ

)∫∫
A0(ξ, η)

α

z
exp

(
iπ

(x− ξ)2 + (y − η)2

λz

)
dξdη

= exp
(

2iπ
z

λ

)
A0(x, y) ∗ α

z
exp

(
iπ
x2 + y2

λz

) (2.7)

The factor exp(2iπz/λ) corresponds just to the phase shift induced by the
propagation over the distance z, and will be in general omitted as not being a
function of x and y. The coefficient α is given by the complete theory of diffraction,
but we can derive it just considering the propagation of a plane wave of unit
amplitude A = 1. Whatever the distance z we must recover a plane wave. So we
have :

1 ∗ α
z

exp

(
iπ
x2 + y2

λz

)
= 1 (2.8)

which leads to the value α = (iλ)−1, as the result of the Fresnel integral, and the
final expression is :

Az(x, y) = A0(x, y) ∗ 1

iλz
exp

(
iπ
x2 + y2

λz

)
= A0(x, y) ∗Dz(x, y) (2.9)

The function Dz(x, y) behaves as the point-spread function (PSF) for the am-
plitudes. It is separable in x and y :

Dz(x, y) = D0
z(x)D0

z(y) =
1√
iλz

exp iπ
x2

λz
.

1√
iλz

exp iπ
y2

λz
(2.10)

where D0
z(x) is normalized in the sense that

∫
D0
z(x)dx = 1. It is important to

note that Dz(x, y) is a complex function, essentially a quadratic phase factor, but
for the normalizing value iλz.

2.1.1 The Fresnel transform

Another form for the equation of free space propagation of the light can be
obtained by developing Eq. 2.9 as follows

Az(x, y) =
1

iλz
exp

(
iπ
x2 + y2

λz

)
×∫∫ {

A0(ξ, η) exp

(
iπ
ξ2 + η2

λz

)}
exp

(
−2iπ

(
ξ
x

λz
+ η

y

λz

))
dξ dη

(2.11)
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The integral clearly describes the Fourier transform of the function between
brackets for the spatial frequencies x/λz and y/λz. It is usually noted as :

Az(x, y) =
1

iλz
exp

(
iπ
x2 + y2

λz

)
Fz
[
A0(x, y) exp

(
iπ
x2 + y2

λz

)]
(2.12)

Following Nazarathy and Shamir (1980), it is worth noting that the symbol
Fz can be interpreted as an operator that applies on the function itself, keeping
the original variables x and y, followed by a scaling that transform x and y into
x/λz and y/λz. Although it may be of interest, the operator approach implies the
establishment of a complete algebra, and does not present, at least for the authors
of this note, a decisive advantage for most problems encountered in optics.

The Fresnel transform and the convolution relationship are strictly equivalent,
but when multiple propagations are considered, it is often advisable to write the
convolution first, and then apply the Fresnel transform to put in evidence the
Fourier transform of a product of convolution.

2.2 Filtering in the Fourier space

The convolution relationship in the direct plane corresponds to a linear filtering
in the Fourier plane. If we denote u and v the spatial frequencies associated with
x and y, the Fourier transform of Eq. 2.9 becomes

Âz(u, v) = Â0(u, v).D̂z(u, v) (2.13)

where :

D̂z(u, v) = exp−iπλz(u2 + v2) (2.14)

is the amplitude transfer function for the free space propagation over the distance
z. Each spatial frequency is affected by a phase factor proportional to the square
modulus of the frequency. For the sake of simplicity, we will still denote this func-
tion a modulation transfer function (MTF), although it is quite different from the
usual Hermician MTFs encountered in incoherent imagery applying to intensities.

The use of the spatial filtering is particularly useful for a numerical computation
of the Fresnel diffraction. Starting from a discrete version of A0(x, y), we compute
its 2D FFT Â0(u, v), multiply it by D̂z(u, v) and take the inverse 2D FFT to
recover Az(x, y). We used this approach to derive the Fresnel diffraction of the
petaled occulter given in the last section of this paper.

Before ending this section, we can check that the approximations used there
do not alter basic physical properties of the wave propagation. To obtain the
coefficient α, we have used the fact that a plane wave remains a plane wave along
the propagation. The reader will also verify that a spherical wave remains also a
spherical wave along the propagation. This is easily done using the filtering in the
Fourier space. A last verification is the conservation of energy, i.e. the fact that
the flux of the intensity does not depend on z. That derives from the fact that the
MTF is a pure phase filter and is easily verified making use of Parseval theorem.
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Sinusoidal pattern Optical Fourier Transform of the sinusoidal pattern
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Figure 3. Left : image of a two-dimensional sinusoidal pattern (Eq.3.1). The spatial

period is 1/m = 0.52mm. Top right : optical Fourier tranform of the sinusoidal pattern

in the (u, v) plane. Bottom right : plot of the intensity of the optical Fourier transform

as a function of the spatial frequency u for v = 0.

3 Fresnel diffraction from a sinusoidal transmission

The particular spatial filtering properties of the Fresnel diffraction can be illus-
trated observing how a spatial frequency is modified in the free space propagation.
The experiment was presented at the CNRS school observing the diffraction of a
plate of transmission in amplitude of the form :

f1(x, y) = (1− ε) + ε cos(2π(mxx+myy)) (3.1)

The plate was obtained taking the photography of a set of fringes. This transmis-
sion in fact bears three elementary spatial frequencies at the positions {u, v} equal
to {0, 0}, {mx,my} and {−mx,−my}. For the simplicity of notations we assume
in the following that the fringes are rotated so as to make my = 0 and mx = m,
and we make the approximation 1 − ε ∼ 1. The fringes and their optical Fourier
transform are shown in Fig. 3. We describes further in the paper how the operation
of Fourier transform can be made optically.

As one increases the distance z, the structure of fringes periodically almost di-
sappears and appears again with the same original contrast. A careful observation
makes it possible to observe an inversion of the fringes between two successive
appearances. This phenomenon is a consequence of the filtering by D̂z(u, v). The
frequencies at u = ± m are affected by the same phase factor exp−(iπλzm2), while
the zero frequency is unchanged. At a distance z behind the screen the complex
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amplitude therefore expresses as

Uz(x, y) ∼ 1 + ε cos(2πmx) exp−(iπλzm2) (3.2)

When λzm2 is equal to an integer number k, the amplitude is purely real and
equal to 1 ± ε cos(2πmx). When λzm2 = 1/2 + k, the amplitude modulation is
an imaginary term, and Uz ' 1 ± iε cos(2πmx). For ε very small, the wavefront
is then almost a pure phase factor of uniform amplitude. It can be represented as
an undulated wavefront, with advances and delays of the optical path compared
to the plane wave. The wave propagates towards the z direction, continuously
transforming itself from amplitude to phase modulations, as schematized in Fig. 4.

The observed intensity is

Iz(x, y) ∼ 1 + 2ε cos(2πmx) cos(πλzm2) (3.3)

The fringes almost disappear for z = (k + 1/2)/(λm2), with k integer. They are
visible with a contrast maximum for z = k/(λm2), and the image is inverted
between two successive values of k.

At the CNRS school we have also shown the Fresnel diffraction of a Ronchi
pattern, a two dimensional square wave fR(x, y) made of parallel opaque and
transparent strips of equal width, as illustrated in Fig. 5. Making use of the Fou-
rier series decomposition, we can write the square wave as a simple addition of
sinusoidal terms of the form :

fR(x, y) =
1

2
+

2

π

∞∑
n=0

1

2n+ 1
sin(2π(2n+ 1)mx) (3.4)

The complex amplitude Uz(x, y) at a distance z behind the Ronchi pattern is
simply obtained by the sum of the sine terms modified by the transfer function.
We have :

Uz(x, y) =
1

2
+

2

π

∞∑
n=0

1

2n+ 1
sin(2π(2n+ 1)mx) exp[−iπλz(2n+ 1)2m2] (3.5)

As the wave propagates, each sinusoidal component suffer a phase modulation
depending on its spatial frequency. One obtains an image identical to the Ronchi
pattern when all the spatial frequencies in Uz(x, y) are phase-shifted by a multiple
of 2π. The occurrences of identical images are for λzm2 = 2k, as for the single sine
term. This property is known as the Talbot effect.

4 Focusing screens and Fourier transform properties of lenses

The Fresnel transform makes it easy to introduce the converging lens and its
properties on the Fourier transform. To make the notations simpler, we assume
that the wavefront A0(x, y) is simply of the form A× f(x, y), where A stands for
an incident plane wave and f(x, y) is the transmission of a screen. Let us consider
that we can manufacture a phase screen of transmission
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Figure 4. Illustration of the Fresnel diffraction of the sinusoidal mask (Eq.3.1) using

Eq.3.2. Top left : z positions (a), (c), (e) where the amplitudes become again identical

to the mask. Corresponding values for the distances are za = k
λm2 , zc = k+1

λm2 , ze = k+2
λm2

(k integer). Positions (b) and (d) correspond to almost pure phase modulation (uniform

intensity) : zb = k+1/2

λm2 , zd = k+3/2

λm2 . Top right : illustration of Eq. 3.2 in the complex

plane. Middle row : simulated images as seen at distances z = za, z = 1/4

λm2 , z = zb, z = zc
and z = zd. Notice the contrast inversion between positions za and zc. Bottom row :

experimental images obtained with a sinusöıdal grid of frequency m = 1/0.52 mm−1.

From left to right : positions z = 0, z = 1/4

λm2 , z = zb and z = 3/4

λm2 . Here again, the

contrast inversion between the first and last images is visible.

Lφ(x, y) = exp

(
−iπ(x2 + y2)

λφ

)
(4.1)

that we affix to f(x, y). At the distance z = φ, Eq. 2.12 shows that the ampli-

tude becomes exp(iπ x
2+y2

λz )f̂( x
λφ ,

y
λφ ), and the intensity appears there as a scaled

Fourier transform of f(x, y).
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Figure 5. Left : image of a Ronchi pattern. The period if 1/m = 0.86mm (see Eq.3.4).

Top right : optical Fourier tranform of the sinusoidal pattern in the (u, v) plane. Bottom

right : intensity of the optical Fourier transform as a function of the spatial frequency

u for v = 0. Note that the even harmonics of the frequency m are present, while they

should not with a perfect Ronchi pattern with identical widths of white and black strips.

In absence of screen (or f(x, y) = 1), the diffracted amplitude is proportional
to a Dirac function δ(x, y), which explicits the focussing effect of a perfect lens
on the axis. Such a phase screen is a converging lens (a thin piece of glass formed
between a plane and a sphere gives the desired transmission), or a parabolic mirror
of focal length φ.

The phase factor exp(iπ x
2+y2

λz ) which remains in this focal plane corresponds
to a diverging lens L−φ(x, y). It can be cancelled adding there a converging lens
of focal length φ. So, a system made of two identical converging lenses of focal
length φ separated by a distance φ optically performs the exact Fourier transform
of the transmission in amplitude of a screen. ItSuch a device is called an optical
Fourier transform system. This property becomes obvious if we re-write the Fresnel
transform of Eq.2.12 making explicit the expression corresponding to diverging
lenses :

Az(x, y) =
1

iλz
L−z(x, y) Fz[A0(x, y)L−z(x, y)] (4.2)

It is clear there that for the optical Fourier transform system the two converging
lenses cancel the diverging terms of propagation. Another similar Fourier transform
device can be obtained with a single converging lens of focal length φ, setting the
transmission f(x, y) in front of it at the distance φ and observing in its focal
plane. Such systems have been used to perform image processing, as described by
Françon (1979).

It is important to note that phase factors disappear also when the quantity
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Figure 6. Top row, from left to tight : Image of a Soret screen, intensity distribution in

the plane z = φ and z = φ/3 (corresponding to the focal planes of the lenses Lφ/(2n+1)

for n=0,1 in Eq. 4.4). Bottom row : intensity distribution at z = φ/5, z = φ/7 and

z = φ/9 (terms n=2,3,4 of the sum). The intensity of the central spot decreases with n

as predicted.

of interest is the intensity, as for example in incoherent imagery (see section 6).
Optical Fourier transform were actually used in the past to analyse speckle patterns
at the focus of large telescopes ( Labeyrie (1970)).

4.1 Focusing screens with a real transmission

It is possible to make screens of real transmission (between 0 and 1) acting as
converging lenses. For that, the transmission of the screen must contain a term
similar to Lφ(x, y). To make its transmission real, we can add to it the transmission
of a diverging lens L−φ(x, y). Doing so we get a cosine term. It is then necessary
to add a constant term and use the right coefficients to make the transmission of
the screen between 0 and 1. We have :

sφ(x, y) =
1

2
+

1

4
{Lφ(x, y) + L−φ(x, y)} =

1

2
+

1

2
cos

(
π(x2 + y2)

λφ

)
(4.3)

Such a screen acts as a converging lens of focal length φ, but with a poor
transmission (1/4 in amplitude, 1/16 in intensity). It will also act as a diverging
lens and as a simple screen of uniform transmission. A different combination of
lenses leads to a transmission with a sine term.
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The variable transmissions of such screens is very difficult to manufacture with
precision. It is easier to make a screen of binary transmission (1 or 0). This can
be done for example by the following transmission :

Sφ(x, y) =
1

2
+

2

π

∞∑
n=0

1

2n+ 1
sin

(
π(2n+ 1)

x2 + y2

λφ

)
=

1

2
+

1

iπ

∞∑
n=0

1

2n+ 1

{
exp

(
iπ(2n+ 1)

x2 + y2

λφ

)
− exp

(
−iπ(2n+ 1)

x2 + y2

λφ

)}

=
1

2
+
i

π

∞∑
n=0

1

2n+ 1
{Lφ/(2n+1)(x, y)− (L−φ/(2n+1)(x, y)}

(4.4)

The transmission of such a screen is given in Fig. 6 (top left). The effectiveness
of such a screen for the focus at z = φ is slightly improved (from 1/4 to 1/π) at the
expense of an infinite number of converging and diverging lenses (of focal lengths
φ/(2n + 1)). A few of these ghost focal planes are shown in Fig. 6 (experimental
results).

These systems may found interesting applications at wavelengths were it is
difficult to manufacture classical lenses or mirrors. It is interesting to note that
screens based on this principle have been proposed also for visible applications by
Koechlin et al. (2009).

5 Fresnel diffraction and shadowing in astronomy : application to co-
ronagraphy

5.1 Fresnel diffraction with complementary screens

Let us consider two complementary screens of the form t(x, y) and 1− t(x, y).
The Fresnel diffraction of the complementary screen is 1 minus the diffraction
of t(x, y). Indeed, at a distance z, we have for an incident plane wave of unit
amplitude :

(1− t(x, y)) ∗Dz(x, y) = 1− t(x, y) ∗Dz(x, y) (5.1)

a property which is sometimes confused with Babinet’s principle in the literature
(see Cash (2011), for example).

5.2 Diffraction with rectangular apertures

The diffraction of rectangular diaphragms (infinite edge, slit, square or rec-
tangle) can be easily computed making use of the separability in x and y of these
functions and the corresponding properties of the convolution. Indeed, if the trans-
mission t(x, y) can be written as tx(x)× ty(y), then :

Dz(x, y) ∗ t(x, y) = D0
z(x) ∗ tx(x)×D0

z(y) ∗ ty(y) (5.2)
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Figure 7. Left : Intensity and right : phase (unwrapped) of the Fresnel diffraction of

an infinite edge H(x), outlined in the left figure. The observing plane is at 1m from the

screen, the wavelength is 0.6µm. The x-axis is in mm.
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Figure 8. Fresnel diffractions (in intensity) of a transmitting slit (left) and an opaque

slit (right) of width 1mm (slits are outlined in the figures). Observing planes are at 0.3m

(red), 1m (blue) and 3m (dashed) from the screen, the wavelength is 0.6µm.

In these cases, many problems find a solution using the Fresnel integrals C(x) and
S(x), that can be defined as :

F (x) = C(x) + iS(x) =

∫ x

0

exp

(
i
t2

2

)
dt (5.3)

The complex amplitude diffracted by an edge is obtained computing the convo-
lution of Dz(x, y) with the Heaviside function H(x) for all x and y (we may denote
its transmission as t(x, y) = H(x)× 1(y) for clarity). We have :

AH(x, y) = Dz(x, y) ∗H(x) = D0
z(x) ∗H(x) =

1

2
+

1√
2i
F

(
x

√
2

zλ

)
(5.4)

The intensity and the phase of the wave are given in Fig. 7. The intensity is
very often represented in Fresnel diffraction, but this is not the case for the phase.
The rapid increase of phase in the geometrical dark zone may be heuristically
interpreted as a tilted wavefront, the light coming there originating from the bright
zone.
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Figure 9. Fresnel diffraction (left : amplitude, right : phase) of a square occulter of side

50 m at 80 000 km, with λ = 0.6µm. The region represented in the figures is 100m×100m

. The color scale for the amplitude (black, white, blue, red) is chosen so as to highlight

the structures in the dark zone of the screen. The color scale for the phase is blue for

−π, black for 0 and red for +π (the phase is not unwrapped here).

Similarly, the free space propagation of the light for a slit of width L can
be directly derived from the above relation assuming that the transmission is
t(x, y) = H(x+ L/2)−H(x− L/2). We have :

AL+(x, y) =
1√
2i

{
F

(
2x+ L√

2λz

)
− F

(
2x− L√

2λz

)}
(5.5)

where the subscript L+ stands for a clear slit of width L.
The Fresnel diffraction for the complementary screen can be obtained as 1

minus the diffraction of the slit. It can be also be written as the addition of the
diffraction of two bright edges H(x−L/2) and H(−x−L/2). Then it is clear that
ripples visible in the shadow of the slit are due to phase terms produced by the
edges. We have

AL−(x, y) = 1− 1√
2i

{
F

(
2x+ L√

2λz

)
+ F

(
2x− L√

2λz

)}
=

1√
2i
F

(
−2x− L√

2λz

)
+

1√
2i
F

(
2x− L√

2λz

) (5.6)

where L− stands for an opaque strip of width L.
A transmitting square (or rectangle) hole can be written as the product of two

orthogonal slits. Therefore the Fresnel diffraction of the open square AL2+(x, y) is
the product of two Fresnel diffractions in x and y. This property of separability
is no longer verified for the diffraction of the opaque square AL2−(x, y), which



16 Title : will be set by the publisher

transmission must be written as 1 minus the transmission of the open square. We
have :

AL2+(x, y) =ALx+(x, y)×ALy+(x, y)

AL2−(x, y) =1−AL2+(x, y)
(5.7)

We give in Fig. 9 an example of the amplitude and phase of the wave in the shadow
of a square occulter of 50×50 meters at 80 000 km, and that could possibly be used
for exoplanet detection. These parameters are compatible with the observation of a
planet at about 0.1 arcsec from the star (a Solar - Earth system at 10 parsec) with
a 4-m. telescope. It is however interesting to note the strong phase perturbation
in the center of the shadow, while it is almost zero outside. In such an experiment,
the telescope is set in the center of the pattern to shadow the direct starlight, and
the planet is observable beyond the angular dark zone of the occulter. The level of
intensity in the central zone is of the order of 10−4 that of the direct light, which
is by far not enough (target is 10−6). To make darker the shadow, it would be
necessary to increase the size of the occulter and the distance occulter-telescope.

5.3 Fresnel diffraction with a circular occulter : the Arago-Poisson spot.

The transmission of a circular occulter of diameter D can be written as 1 −
Π(r/D), where r =

√
x2 + y2, and Π(r) is the rectangle function of transmission

1 for |r| < 1/2 and 0 elsewhere. Since the occulter is a radial function, its Fresnel
diffraction is also a radial function that can be written as :

AD(r) = 1− 1

iλz
exp

(
iπ
r2

λz

)∫ D/2

0

2πξ exp

(
iπ
ξ2

λz

)
J0

(
2π
ξr

λz

)
dξ (5.8)

where J0(r) is the Bessel function of the first kind. Here again, the Fresnel diffrac-
tion of the occulter writes as 1 minus the Fresnel diffraction of the hole. At the
center of the shadow we have AD(0) = exp[iπD2/(4λz)] and we recover the value
1 for the intensity.

Obtaining the complete expression of the wave for any r value is somewhat
tricky. The integral of Eq. 5.8 is a Hankel transform that does not have a simple
analytic solution. A similar problem (the wave amplitude near the focus of a lens)
has been solved by Lommel, as described by Born & Wolf (2006). It is possible to
transpose their approach to obtain the Fresnel diffraction of a circular occulter.

After some calculation, we obtain the result in the form of alternating Lom-
mel series for the real and imaginary parts of the amplitude. The result can be
represented in a concise form as :
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Ψ(r) =

r < D/2 : A exp

(
i
πr2

λz

)
exp

(
i
πD2

4λz

)
×
∞∑
k=0

(−i)k
(

2r

D

)k
Jk

(
πDr

λz

)
r = D/2 :

A

2

[
1 + exp

(
i
πD2

2λz

)
J0

(
πD2

2λz

)]
r > D/2 : A−A exp

(
i
πr2

λz

)
exp

(
i
πD2

4λz

)
×
∞∑
k=1

(−i)k
(
D

2r

)k
Jk

(
πDr

λz

)
(5.9)

Two expressions are needed to ensure the convergence of the sum depending on
the value of 2r/D compared to 1. The convergence is fast except for the transition
zone around r ∼ D/2, and luckily there is a simple analytical form there. An upper
bound of the series limited to n terms is given by the absolute value of the n+ 1
term, according to Leibniz’ estimate.

An illustration of this formula is given in Fig. 10 for an occulter of diameter
50 m, observed at a distance of 80 000 km, at λ = 0.55µm, which corresponds
to data for the exoplanet case. For this figure, we computed the series for 100
terms, which can be rapidly done using Mathematica (Wolfram (2012)) and gives
a sufficient precision everywhere. The Arago spot is clearly visible at the center
of the diffraction zone. For r � D, the amplitude is fairly described by the only
non-zero term of the Lommel series that is the Bessel function J0(πrD/(λz)). Its
diameter is approximately 1.53λz/D.

As mentioned in the introduction, Arago’s experience was reproduced during
the CNRS school of June 2012. Fresnel diffraction patterns (intensity) of a small
occulter, reproduced in Fig.1 show the Arago spot at their center.

Thus a circular screen is not a good sunshade. For the detection of exoplanets,
several projects envisage petaled occulters (Arenberg et al. (2007), Cash (2011))
and we give an illustration of the performances in Fig.11. The analytic study of cir-
cular occulters remains however of interest for solar applications. Indeed, because
of the extended nature of the solar disk, it seems difficult to use shaped occul-
ters there, even if serrated edge occulters have been envisaged for that application
(Koutchmy (1988)).

6 Application to incoherent imaging in astronomy

The formation of an image at the focus of a telescope in astronomy can be
divided into two stages, one corresponding to a coherent process leading to the
point spread function (PSF) and the other corresponding to a sum of intensities,
e.g. an incoherent process. Eq.4.2 makes it possible to write the PSF observed
in the focal plane of the telescope as a function of the spatial (x, y) or angular
(α = x/φ, β = y/φ) coordinates. For a on-axis point source of unit intensity, we
have :
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Figure 10. Fresnel diffraction of an occulter of diameter 50 m, observed at a distance

of 80 000 km, at λ = 0.55µm. Left : 2D intensity, top right : central cut of the intensity,

bottom right : central cut of the unwrapped phase. Notice the strong Arago spot at the

center of the shadow and the important phase variation.

Figure 11. Fresnel diffraction of an occulter with a petal shape. From left to right : the

occulter, the intensity (×10) in the shadow and the phase. The parameters are the same

as in Fig. 10 D = 50m, z = 80000km, λ = 0.55µm. The shadow at the center of the

screen is much darker (no Arago spot) and the phase variation is weak there.

Rφ(x, y) =
1

Sλ2φ2

∣∣∣∣P̂ ( x

λφ
,
y

λφ

)∣∣∣∣2
R(α, β) =

1

Sλ2

∣∣∣∣P̂ (αλ , βλ
)∣∣∣∣2

(6.1)

where φ is the telescope focal length and P (x, y) is the function that defines the
telescope transmission. Aberrations or other phase defaults due to atmospheric
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Figure 12. Numerical 3D representation of the PSF (left), here an Airy function, and

the corresponding OTF (right) of a perfect telescope with a circular entrance aperture.

turbulence can be included in P (x, y). The division by the surface area S of the
telescope is introduced here to normalize the PSF. The normalizing coefficients
ensure the energy conservation of the form :

∫∫
Rφ(x, y) dxdy =

∫∫
R(α, β) dαdβ =

1

S

∫∫
|P (ξ, η)|2 dξdη = 1 (6.2)

where we have made use of Parseval theorem to write the last equality. For a
telescope of variable transmission, see Aime (2005).

It is convenient to use angular coordinates independent of the focal length of
the instrument. Each point of the object forms its own response in intensity shifted
at the position corresponding to its angular location. This leads to a convolution
relationship. The focal plane image is reversed compared with the object. By
orienting the axes in the focal plane in the same direction as in the sky, we obtain :

I(α, β) = O(α, β) ∗R(−α,−β) (6.3)

where O(α, β) is the irradiance of the astronomical object. The Fourier transform
of R(−α,−β) gives the optical transfer function (OTF) T (u, v) :

T (u, v) = F [R(−α,−β)] =
1

S

∫ ∫
P (x, y)P ∗(x− λu, y − λv)dxdy (6.4)

where u and v are the angular spatial frequencies.
For a perfect circular aperture of diameter D operated at the wavelength λ,

the PSF becomes the following radial function of γ :

R(α, β) = R(γ) =

(
2
J1(πγD/λ)

πγD/λ

)2
S2

λ2
(6.5)

where γ =
√
α2 + β2, and the OTF the radial function of w =

√
u2 + v2 :
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Figure 13. Example of PSFs shown during the CNRS school using a simple optical

setup. Top, circular apertures, bottom, corresponding PSFs. Note the inverse relationship

between the size of the PSF and the aperture diameter.

T (u, v) = T(w) =
2

π

(
arccos(

λw

D
)− λw

D

√
1− (

λw

D
)2

)
(6.6)

This expression is obtained computing the common surface to two shifted discs.
The OTF looks like a Chinese-hat, with a high frequency cutoff wc = D/λ.

Examples of PSFs for various apertures presented during the CNRS school are
given in Fig. 14. The corresponding MTFs shown in the same figure are computed
numerically.
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Figure 14. From left to right : aperture, PSF and MTF. For the sake of clarity, the

MTF corresponding to the 18-aperture interferometer is drawn for smaller elementary

apertures than those of the left figure.

7 Conclusion

This presentation aimed at introducing the formalism for Fresnel’s diffraction
theory, widely used in optics and astronomy.
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Besides analytical derivation of basic relationships involving instrumental pa-
rameters, visual illustrations using laboratory demonstrations are given, as was
presented during the CNRS school. Most of these are basic in the field of image
formation and are frequently met in astronomy. A few of them concerning the
shadows produced by the screens are seldomly addressed in the astronomical lite-
rature up to now, though they presently are emerging topics. Demonstrations are
made using material for students in Physics : a laser and a beam expander, various
transmitting or opaque screens and a detector. The paper begins with a histori-
cal background leading to the current context. Then analytical derivations, based
on the Huyghens-Fresnel principle, using wavefronts and complex amplitudes are
presented, providing expressions for the free space propagation of light. Plenty use
is made of convolution relationships and filtering aspects.

Fresnel’s diffraction is illustrated through some situations, such as the propa-
gation after a screen with sinusoidal transmission function, or such as shadowing
produced by occulters set on the pointing direction of a telescope for coronagra-
phy. Here are met such effects as the so-called Poisson-Arago spot, and diffraction
by sharp edges (rectangular or circular screens). The use of focusing screens have
been considered as well. Along that way, expressions of diffracted amplitudes are
given for various shapes of apertures. Then, the Fourier transforming properties
of lenses and binary screens (made of clear and opaque zones, i.e. transmission
function being 0 or 1 accordingly) are presented.

The paper ends with a section describing incoherent imaging in astronomy and
dealing with PSFs (intensity response of the instrument to a point-like source)
and MTFs (a link with linear filtering). There, images of PSFs obtained with
the demonstration set-up, are presented for various shapes and configurations of
collecting apertures : from single disk to diluted apertures (several sub-pupils)
as used in aperture synthesis with several telescopes. Besides, illustrations for
associated MTFs are obtained by computation.

The paper could hopefully be used either as a reminder or as an introduction
to the basics of the image formation process in the context of diffraction theory.
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