
A&A manuscript no.(will be inserted by hand later)Your thesaurus codes are:missing; you have not inserted them ASTRONOMYANDASTROPHYSICS14.11.1995The e�ects of clipped photon detection in speckleinterferometry and speckle masking techniques�E. Aristidi and C. AimeD�epartement d'Astrophysique de l'Universit�e de Nice { Sophia Antipolis, U.R.A. 709 du C.N.R.S., Parc Valrose, 06108 NiceCedex 2, FranceNovember 14, 1995Abstract. This paper present numerical illustrations ofthe e�ects of clipping of photoevents in speckle interfer-ometry and speckle masking. The clipping is due to a satu-ration of the photon-counting detectors that cannot countmore than one photon per pixel, causing the image to becomposed of \0" and \1". The theoretical basis for thisstudy has been published by Aime and Aristidi (1992).Clipping e�ects are investigated numerically on real stardata. As predicted by theory, the clipping introduces sev-eral e�ects on auto and triple correlation functions, suchas a linear global loss of energy, and non linear terms whicha�ects mainly the high frequencies. Attention is focusedon the way the astronomical information is a�ected bythis kind of detection, especially for the case of the doublestars.1. IntroductionObservation of weak sources in speckle interferometry re-quires the use of fast photon-counting cameras. Photonscan be detected one by one as they arrive, with their spa-tial coordinates and arrival time ; this is the case with,for example, the PAPA camera (Papaliolios et al. 1985).The detection can be performed as well frame by frame,a single frame being the result of an integration of a fewmilliseconds ; intensi�ed CCDs like CP40 (Blazit 1987)belong to this later class of device. Features of these de-tectors are the large number of pixels and the excellentstability of the CCDs.Because the detectors are not perfect, the photon im-ages su�er from various artifacts, such as geometric distor-sions or the well-known \photon counting hole" caused bythe centroiding electronics (Blazit et al. 1975). A review ofthese problems has been made by Foy (1987). Ho�mann�: Based on observations collected at the 1.93m of the Obser-vatoire de Haute Provence, France

(1993)makes a description of possible solutions to the pho-ton counting hole problem. A more recent paper relativeto this subject has been written by Thiebaud (1994).The problem we shall examine is somewhat di�erentto that of the photon counting hole, but appears for sim-ilar reasons. It is the so-called \clipping" e�ect of photo-events ; clipping denotes the e�ect of a saturation of thedevice that does not allow the detector to di�erentiate be-tween a single photon and more than one photon. Clippingbasically a�ects photon cameras of the integration type,but is also likely to in
uence sequential ones if possibledead-time reactions are to be considered.In practice, these e�ects are generally neglected ow-ing to the very low probability of occurence of more thanone photon per pixel for the weak astronomical sources ofinterest, giving generally less than one hundred photonsper image. Moreover, these experimental approximationsmight appear, at a �rst glance, to be well supported by thetheoretical approach that describes the photon noise lim-itation in speckle interferometry as a compound Poissonimpulse process, where it is assumed that the probabilityof more than one photoevent is vanishingly small com-pared with the probability of one or zero photoevents.Then the signal is modelized as a sum of unit impulsesat di�erent spatial locations. As emphasized by Good-man (Goodman 1985), this representation assumes thatthe detector is continuous in space. Taking into accountthe �nite dimensions of the pixels of the detectors, theideal distribution is integrated and leads directly to Pois-son statistics for the number of photons occuring in a �xedpixel size. The ideal photodetected image is given by thenumber of photons (theoretically from 0 to 1) occuringin each pixel. The e�ect of clipping acts on the saturationof the Poisson law for each pixel.A technique of clipping is sometimes used in the �eldof laser optics where it is applied as a tool for data com-pression. A few papers deal with the e�ects of clippingon speckle interferograms at high light level (Marron &Morris 1985; Ohtsubo & Ogirawa 1988; Pedersen 1984).



2 E. Aristidi & C. Aime : The e�ects of clipping in speckle interferometry and speckle maskingThe case of photon-counting detection has been studiedby Barakat (1988) who gives the expression of the autocor-relation function (AC) for a point source fully developpedspeckle pattern.In high angular resolution astronomical imaging, theinformation destroyed by the atmospherical turbulence,can be partly recovered by means of statistical functionsof the random instantaneous images, as �rst shown byLabeyrie in the early 70's (Labeyrie 1970). The AC of theimages can give, for example, the angular separation ofa very close double star. The triple correlation (TC) canbe used to recover a di�raction-limited image of the ob-served object (Weigelt 1991). Clipping a�ects these sta-tistical functions and destroy the linear object-image con-volution relation. A general study has been published re-cently (Aime & Aristidi 1992) and mathematical expres-sions were given for the clipped AC and TC ; this paperwill be referenced in this text as Paper I. Other partialresults on clipping and parts of the present paper can befound in Aime et al. (1990), Aime et al. (1991), Aristidiat al. (1991).The photodetected AC and TC su�er from an impor-tant bias due to the statistics of the photons. Petrov etal. (1982) have proposed a technique based on a simul-taneous double detection of the photon-counting specklepatterns ; the bias disappear if one computes, instead ofthe AC, the cross correlation between the two detectionsof each image. Some astrophysical results using this tech-nique can be found in the paper of Thiebaud (1994). Thesehave been generalized to the TC by Ho�man and Weigelt(1987) using three simultaneous detections of each image.Cross AC/TC will be taken into account in our presen-tation. Nevertheless these functions will be referenced asAC and TC in the text.Our present paper is basically a numerical illustrationof Paper I, as announced at the end of it. General rela-tions of Paper I are summarized in section 2. Section 3gives some numerical illustrations of single and doublestars speckle patterns under di�erent clipping conditions.In addition to the mathematical expressions valid for afully developped speckle pattern, we have made use ofspeckle interferograms of the star Vega in the visible. Adiscussion of the results is given in section 4.2. General expressions for clipped AC and TCfunctionsThis section is devoted to a brief summary of the basicequations as derived in Aime and Aristidi (1992). Theseequations are valid for spatially stationnary speckle pat-terns. The main point is that single photon-clipped ACand TC can be expressed as functions of the multifoldPDF of the event \0 photon" of a perfectly photodetectedimage. This later quantity can be directly derived from thehigh light level probability density function (PDF) of the

speckle pattern. The presentation we give here has beensomewhat simpli�ed with regard to that of Paper I.We use the following notations :{ I(r) denotes the classical integrated intensity fallingon a pixel at position r, Ip(r) is the photon-limitedimage that could be given by a perfect photon cameraand Ic(r) is the single photon clipped image made ofa succession of \0" and \1" where the value \1" isregistred for one or more incident photons.{ �n is the mean number of photon per pixel in Ip(r).{ C(�), Cp(�) and Cc(�) are the AC of I(r), Ip(r) andIc(r) respectively ; � beeing here the spatial lag vector.{ T (�1; �2), Tp(�1; �2) and Tc(�1; �2) are the TC of I(r),Ip(r) and Ic(r) respectively ; �1 and �2 are the spatiallags.For a single photon clipped image, the possible eventsare of the form of Bernouilli trials. Let us denote as �i therandom variable equal to 1 when one (ore more) photonsare detected i pixel i and 0 otherwise, and �i the randomvariable associated with the contrary event ; �i is equal to1 for no photon detected in pixel i, and 0 otherwise. Byde�nition we have :�i + �i = 1 (1)The mean number of detected photons per pixel of theclipped image can be expressed as :mc = E[�i] = E[1� �i] = 1�E[�i] = 1� p1(0) (2)where E[:::] denotes the expected value. We have as-sumed space stationnarity by writing that E[�i] is inde-pendent of the spatial position i. The quantity p1(0) rep-resent the probability of the event \0 photon" in a pixel.Since this quantity is not a�ected by the clipping process,p1(0) is also the value of p1(n) (the probability of detectingn photons in a pixel for a perfect photodetected image) forn = 0. This approach can be generalized staightforwardlyto the computation of clipped AC and TC. We have :Cc(�) = E[�i�j ] = E[(1� �i)(1� �j)]= 1� E[�i] �E[�j ] + E[�i�j ] (3)It is necessary to consider the two cases � = 0 and� 6= 0. For � = 0, i.e. i = j, the product �i�j is equal to �2i .With the 0{1 de�nition of �i, we can write �2i = �i, andthe value of Cc(0) reduces to mc. For � 6= 0 and assumingspace stationnarity, E[�i�j ] can be written as p2(0; 0; �),the probability of the joint occurence of the events 0 pho-ton for two pixels distant �. The overall clipped AC be-comes :� Cc(0) = 1� p1(0)� Cc(� 6= 0) = 1� 2p1(0) + p2(0; 0; �) (4)



E. Aristidi & C. Aime : The e�ects of clipping in speckle interferometry and speckle masking 3Similarly, the TC of the clipped image can be writtenas :Tc(�1; �2) = E[�i�j�k] = E[(1� �i)(1� �j)(1� �k)]= 1� E[�i]� E[�j ]� E[�k] + E[�i�j ]+E[�i�k] +E[�j�k]� E[�i�j�k] (5)Here again we must take into account the particularvalues �1 = 0 and/or �2 = 0 that make some of the spatialpositions i, j and k identical. We obtain :� Tc(0; 0) = 1� p1(0) = Cc(0)� Tc(�1; 0) = 1� 2p1(0) + p2(0; 0; �1) = Cc(�1)� Tc(0; �2) = 1� 2p1(0) + p2(0; 0; �2) = Cc(�2)� Tc(�1; �1) = 1� 2p1(0) + p2(0; 0; �1) = Cc(�1)� Tc(�1; �2) = 1� 3p1(0) + p2(0; 0; �1) + p2(0; 0; �2)+p2(0; 0; �2 � �1)� p3(0; 0; 0; �1; �2) (6)where p3(n1; n2; n3; �1; �2) is the three-fold PDF of theperfect photodetected image, p3(0; 0; 0; �1; �2) being theprobability of the event \0 photon" for three di�erent pix-els �1 and �2 distant.Since the variance of the photons a�ects only the ori-gin of the AC/TC, cross-correlations may be obtained byusing the general term of equations 4 and 6 for � = 0,�1 = 0 and �2 = 0. All the results presented in this paperas AC/TC are in fact cross-correlations.Now we need to express p1(0), p2(0; 0; �) andp3(0; 0; 0; �1; �2). These quantities may be derived fromthe statistics of the high light level images. Indeed, high-light level and photon counting PDF's are related one an-other by the Poisson Transform (Goodman 1985). For thesinglefold PDF, we have :p1(n) = Z 10 (�
)nn! e��
 P1(
) d
 (7)where P1(
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where P2 and P3 are the two- and three-fold PDF's of thespeckle images.At very low light levels, �
 � 1, and one can de-velop the exponential terms into a power expansion ; equa-tions 4 and 6 lead to the following approximations :Cc(�) = Cp(�)� �32 (T (0; �) + T (�; �)) + �412 (2Q(0; 0; �)+3Q(0; �; 0)+ 2Q(�; 0; 0)) + o(�4) (10)Tc(�1; �2) = Tp(�1; �2)� �42 (Q(�1; �2; 0) +Q(�1; �2; �1)+Q(�1; �2; �2)) + o(�4) (11)Where Q(�1; �2; �3) is the fourth-order correlation ofthe high-light images. The clipping may be considered asa �rst approximation in a mixing between statistical func-tions of di�erent orders. These equations may be used foran easy computation of the clipped AC/TC at low lightlevel (typically under 0.01 photon/pixel). A comparisonbetween the di�erent approximation orders of the clippedAC is shown in �g. 4.At that level, we have used two approaches to obtaina quantitative estimate of the e�ects of the clipping onAC and TC. The �rst one is based on the use of real datato compute high-light level PDF's. The second one is fullytheoretical and assumes that the complex amplitude of thepoint source speckle pattern is a circular gaussian randomvariable.2.1. Use of real data to simulate clipped AC and TCThe data material consist of speckle interferograms ob-tained at the 193 cm telescope of the Observatoire deHaute Provence, France, on an unresolved star (Vega).The telescope was used in Cassegrain con�guration (fo-cal length of 30 m) with a �15 microscope objective anda red �lter. The images were captured using an intensi-�ed video CCD camera. The exposure time was 20 ms foreach frame. An example of such images is shown in �g. 2.Altogether 1200 images were recorded and processed. Wedenote as V (r) these images.The simulation of speckle patterns corresponding tothe observations of a double star, or of a structured ob-ject, was obtained by convolving each individual imagewith the intensity distribution of the desired object, ow-ing to the object-image convolution relation valid in theisoplanetism domain (Labeyrie 1970). To make a completedescription of a double star having an intensity ratio � anda separation vector d, one can simply write the quantityV (r) + �V (r� d) for each instantaneous frame.The clipped AC/TC were computed using eqs. 4and 6 ; the quantities p1(0) and p2(0; 0; �) are estimatedas follows :
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uence of themultiplicative factor � de�ned in relation 13. Note that : (i) the e�ect is neglectible for �n smaller than 10�2 where � = 0:98and (ii) the attenuation a�ects mainly the small values of the spatial lag �, i.e. near r(�)=1, due to the r2(�) dependency in thepower expansion of � (see relation 13). (b) The same functions drawn between their respective minimum and maximum ; thisis to put in evidence the \super-resolution" non-linear e�ect caused by the clipping. It is quite insensible for �n smaller than 0.1.1. Bin the intensity value of the synthesized speckle pat-tern over 64 integer values.2. Compute the histogram and joint-occurrence his-tograms of the binned images. Normalise them so thattheir integral is 1. Because of the binning procedure,the mean m is of a few tenths of units.3. Allow the parameter � to vary so that the averagenumber of photon �n takes the required value. Computethe quantities p1(0), p2(0; 0; �) and p3(0; 0; 0; �1; �2) us-ing relations 8 and 9 (Poisson transforms of the abovejoint occurence histograms).We would like to point out that this approach is not acomplete simulation since we do not start from images ofphoton impacts. However the advantage of our method istriple. First, it allows us to compute the AC/TC for sev-eral values of the average number of photons per pixel fromone set of intensity PDF's, by adjusting the parameter �to a relevant value. Second, it is easy to compute cross-correlations, while in a complete simulation one wouldgenerate two photon-counting images by individual inten-sity pattern. The third advantage is that the SNR of thepower spectrum obtained by this procedure is that of thehigh-light level images.2.2. Analytical expressions for the Gaussian caseFor a fully developped speckle pattern , i.e. when the com-plex amplitude of the wave at the focus of the telescope is aGaussian circular random variable, analytical expressionsare available for p1(0), p2(0; 0; �) and p3(0; 0; 0; �1; �2).
Fig. 2. Typical speckle interferograms of the star Vega (� Lyr)observed at the 193 cm OHP telescope (the �eld of the imageis 2.9 arcsec and the value of r0 is about 7 cm).For the point source the expressions of the probabilitiesp1, p2 and p3 are :� p1(0) = 11 + �n� p2(0; 0; �) = 11 + 2�n+ �n2(1� r2(�))� p3(0; 0; 0; �1; �2) = [(1 + �n)3��n2(r2(�1) + r2(�2) + r2(�2 � �1))+ 2�n3r(�1)r(�2)r(�2 � �1)]�1 (12)



E. Aristidi & C. Aime : The e�ects of clipping in speckle interferometry and speckle masking 5where r(�) is the correlation function of the complexamplitude for two points distant � of the incident wave.r(�) gives an idea of the spatial extension of the shapeof the speckles. It contains in particular the pupil of thetelescope (Goodman 1985). The demonstration of aboverelation is very brie
y given in the appendix.3. Results3.1. For the point-sourceThe study of the point source can provide interesting in-formations upon the modi�cations that may occur on theAC and the TC through the clipping process.3.1.1. On the ACOne can distinguish between two e�ects :The �rst one is a linear multiplicative coe�cient �which weakens all the values of the AC. This attenuation isvisible on theoretical curves valid for the Gaussian model(�g. 1a) as well as on the images of Vega (�g. 3a). Theclipped AC can be written combining eqs. 4 and 12 :Cc(�) = 1� 21 + �n + 11 + 2�n+ �n2(1� r2(�)) (13)The coe�cient � is de�ned as the ratio of clipped tounclipped AC and is constant at the �rst order in r(�) ;the expression of the unclipped AC has been given byGoodman (1985) : Cp(�) = �n2(1 + r2(�)).� = Cc(�)Cp(�) = 1 + �n(1� r2(�))=(1+ r2(�))1 + �n [3 + �n(3� r2(�)) + �n2(1� r2(�))](14)which can be approximated when � is small by :� ' 1(1 + �n)2 (15)As expected, � goes fainter as �n increases ; it tends to-wards 1 when �n ! 0 which is not surprising owing thevery low probability of the occurence of two simultanedphotoevents in that case. In the asymptotic case where�!1, all the pixels of the image become saturated andthe AC tends towards a constant (since space stationnar-ity is assumed througout this paper).Equation 10 gives an approximation of the clipped ACfor small values of �n : it is equal to the unclipped ACplus correcting terms of higher statistical order. The two�rst correcting terms (triple correlation and quadricorre-lation), given in eq. 10, are plotted in �gure 4a for �n = 0:1.The two �rst correcting terms give a good approximationof the clipped AC at this level of light. Curves 4b are thecorresponding transfer function, but for �n = 1. They werenormalized between 0 and 1 in order to put in evidence thenon linear e�ect. They show that this e�ect is not repre-sented by the �rst two correcting terms, which is not very

surprising because either the bispectrum and the Fouriertransform of the quadricorrelation are spatially limited bythe cuto� frequency of the telescope.The second e�ect appears only when the number ofphoton per pixel is high (�n > 0:1) and can be interpretedas an asymptotic behaviour with no real application toastronomy. It consists in a slight modi�cation of the AC scurve shape : the width of the central peak decreases as �increases. This is clearly visible on the analytical curves(�g. 1b) but not on the AC of Vega (�g. 3b). The corre-sponding transfer functions are plotted in �g. 5 ; part ofthe energy is spread beyond the cuto� frequency of thetelescope. This e�ect may be understood as the signatureof the higher orders statistical terms that appear in theAC when the clipping occurs.
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a close reference star. The object-image convolution rela-tion (Roddier 1988) predicts that V (f) identi�es to thesquare modulus of the Fourier transform of the object, anAiry function in our case.The calculation was made as follows :{ Simulation of 1000 speckle interferograms correspond-ing to a 2 m circular aperture telescope operated at awavelength of 5000 �A, and a turbulence characterizedby a Fried parameter r0 = 20 cm.{ Computation of the clipped power spectrumWp(f) fora mean number of photon per pixel �np.{ Convolution of all the speckle patterns by an uniformdisc of diameter 6 pixels{ Computation of the clipped power spectrumWo(f) fora mean number of photon per pixel �no.{ Calculation of the visibility function V (f) = Wo(f)Wp(f) .The clipping occurs here at two levels, a�ecting boththe power spectrum of the object and of its reference. Veryoften the reference star is choosen brighter than the objectfor SNR reasons ; in such a case the clipping e�ects arenot the same on both cases.The results of the simulation are presented in �gure 8.Several visibility functions have been calculated for var-ious values of �np and �no varying between 0.001 and 0.1photon per pixel. The most interesting result concernsthe low frequencies. When �n becomes greater than 0.01the curves present some artifacts near the atmosphericcuto� frequencies ; the visibility functions look like thoseof a giant star surrouded by a shell. Some astrophysicalmisinterpretations could occur if the clipping e�ects areoverlooked. The remaining of the curves is not really af-fected, in particular the �rst minimum of the Airy functionis always very clearly seen and gives the diameter of the



8 E. Aristidi & C. Aime : The e�ects of clipping in speckle interferometry and speckle maskingstar. We want to emphasize that the interferograms gener-ated by the simulation algorithm are noise free (no photonnoise, no additive electronical or thermical noise).
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Fig. 15. Variation of ~� (see text) as a function of � for di�er-ent clipping rates. This concerns the clipped TC's of a doublestar speckle pattern computed with the analytical model withr(�) = exp(��2=s2) and s = 1.in eq. 22. Thus this technique is not applicable in presenceof clipping as far as one wants a precise determination of�.4. ConclusionWe have given in this paper the results of the e�ectsof clipped photon detection in Labeyrie's and Weigelt'sspeckle techniques (Labeyrie 1970; Weigelt 1977). Theproblem has been approached both by a theoretical wayand a numerical simulation using real data on the brightstar Vega. Three examples have been studied : an unre-solved point source, a double star and a circular resolvedobject. For the point source the two approaches have beenused and have given comparable results. For the doublestar the study has been fully theoretical. For the resolvedobject, the analytical expressions are very complicatedand only the simulation has been tested in this case.The theoretical approach, under the assumption thatthe complex amplitude of the wave at the focus of thetelescope is a circular Gaussian random variable for apoint source speckle pattern, allowed us to obtain analyt-ical expressions for the clipped autocorrelation function.The computation was made using either the probabilitydensity functions (PDFs) of the speckle pattern, or themoment generating functions (MGFs) as described in Ap-pendix A. The complete formalism, published recently inPaper I, is summarized in the appendix.The main interest of our study is in the numericalapplications, i.e. the computation of the energy transferfunctions (ETFs) (two-dimensional Fourier transforms of

the autocorrelations for a point source speckle pattern)and the application to structured objects. Under clipping,we have roughly to consider two e�ects that degrade theETF : a linear, frequency-independent, loss of energy, anda non-linear deformation of the ETF curve that spreadsenergy beyond the theoretical cuto� frequency. The twoe�ects are of di�erent magnitude ; for example, the globalattenuation of the ETF is already of 20 % when 0.005 % ofthe pixels are clipped (corresponding to a average numbern = 0:01 photons per pixel). The non-linear e�ect requiresa higher level of clipping to be visible. For n = 0:1 photonsper pixel, the rate of non-linearity de�ned by the percent-age of energy transferred beyond the cuto� frequency isonly 0.08 %. It becomes signi�cant when n becomes of theorder of unity ; this e�ect is therefore an asymptotic be-havior with no real interest in astronomy. Altogether themain conclusion of this study is that the clipping may beneglected when �n < 10�2 photon per pixel.For a double star speckle pattern, it is interestingto note that the value of the ratio between two compo-nents may be misestimated by factors which can reach40% under strong clipping conditions. This e�ect may beof importance if one considers the application of binarystar measurements to fundamental astronomy (Mc Allis-ter 1988).The theoretical results are found to be well supportedby the numerical simulation performed on more realisticspeckles. As we already emphasized it in the body of thepaper, the technique which consists in computing �rst anestimate of the intensity second PDF and then applying aPoisson transform was found of interest from a SNR pointof view.The theoretical study and the numerical simulationwere made for single-clipped speckle patterns (number ofphotons limited to 1). The computation could be easilygeneralized to the N -clipped case if we had to consider acamera able to detect up to 2, 3 or N photons ; this wouldbe of interest for example whith cameras like electron-bombarded CCD (Cuby 1990) which allow some dynamicin the photoevents.Appendix A : Analytical expressions of AC andTC for a fully developped speckle patternA.1 Use of the moment generating function (MGF) to ex-press the probability of the zero-photon eventTheMGFM(v) can be de�ned as the Laplace transformofthe probability density function P (
) (Starck and Woods1986) :M(v) = Z ev:
 P (
) d
 (23)This expression can be generalized to the twofold andthreefold MGF :M2(v1; v2; �) = Z ev1
1+v2
2 P2(
1;
2; �) d
1 d
2 (24)
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1+v2
2+v3
3�P3(
1;
2;
3; �1; �2) d
1 d
2 d
3 (25)By comparing these expressions with equations 8 and 9we can write the probabilities p1(0), p2(0; 0; �) andp3(0; 0; 0; �1; �2) as functions of the high-light MGF's:� p1(0) =M1(��)� p2(0; 0; �) =M2(��;��; �)� p3(0; 0; 0; �1; �2) = M3(��;��;��; �1 ; �2) (26)Substituing relation 26 into 4 and 6 we obtain the ex-pressions of the clipped AC from MGF's :� Cc(0) = 1�M1(��)� Cc(� 6= 0) = 1� 2M1(��) +M2(��;��; �) (27)and similarly for the clipped TC :� Tc(0; 0) = 1�M1(��) = Cc(0)� Tc(�1; 0) = Cc(�1)� Tc(0; �2) = Cc(�2)� Tc(�1; �1) = Cc(�1)� Tc(�1; �2) = 1� 3M1(��) +M2(��;��; �1)+M2(��;��; �2)+M2(��;��; �2 � �1)�M3(��;��;��; �1 ; �2) (28)
A.2 Expression of the MGF of an extended astronomicalobject speckle patternThis section is a summary of a paper of Aime and Aristidi(1991) that gives the N -fold characteristic function of anextended object speckle pattern under the hypothesis thatthe complex amplitude of the wave on the focus of thetelescope is Gaussian.An extended object can be represented by N pointsweighted by the intensities �n in the form :O(x) = NXn=1�n �(x� xn) (29)

For a continuous object, N is the number of samplingpixels. The object can also be represented as a diagonalmatrix D of rank N whose coe�cients are the �n :D = 26664�1 �2 . . . �N 37775 (30)We de�ne now the N � N covariance matrix R(�) ofthe complex amplitude of the wave at the focus of thetelescope, whose coe�cient are :Rij(�) = r(xj � xi + �) = E[	(xj + �)	�(xi)] (31)where 	(x) is the complex amplitude of the wave in thefocal plane for a point-source (it is assumed gaussian inthis presentation) ; r(�) is then covariance of 	(x) (alsocalled \complexe coherence factor" by Goodman (1985)).The singlefold, twofold and threefold MGF are givenas the inverse of the determinant of a matrix :M1(v) = det�1 (I� vR(0)D) (32)M2(v1; v2; �) = det�1 � I � v1R(0)D �v2R(��)D�v1R(�) I � v2R(0)D�(33)M3(v1; v2; v3; �1; �2) = det�10@ I � v1R(0)D �v2R(��1)D �v3R(��2)D�v1R(�1)D I � v2R(0)D �v3R(�1 � �2)D�v1R(�2)D �v2R(�2 � �1)D I� v3R(0)D 1A (34)where I is the N �N unitary matrix.A.3 Expressions for the point-source speckle patternFor a point source, the above de�ned matrix D reduces toone value representing the intensity of the point-source.The expressions of the MGFs become :M1(v) = 11�mv (35)M2(v1; v2; �) = 1(1�mv1)(1�mv2)�m2v1v2r2(�) (36)M3(v1; v2; v3; �1; �2) = [(1�mv1)(1�mv2)(1�mv3)�m3v1v2v3(r(�2)r(��1)r(�1 � �2)+r(�1)r(��2)r(�2 � �1))�m2v1v3(1�mv2)r2(�2)�m2v1v2(1�mv3)r2(�1)�m2v2v3(1�mv1)r2(�2 � �1)]�1 (37)where m is the mean of the high-light speckle images.By applying equations 26 we obtain after a little algebraicmanipulation the expressions of p1, p2 and p3 given insection 2 (equation 12).
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