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Abstract. This paper present numerical illustrations of
the effects of clipping of photoevents in speckle interfer-
ometry and speckle masking. The clipping is due to a satu-
ration of the photon-counting detectors that cannot count
more than one photon per pixel, causing the image to be
composed of “0” and “1”. The theoretical basis for this
study has been published by Aime and Aristidi (1992).
Clipping effects are investigated numerically on real star
data. As predicted by theory, the clipping introduces sev-
eral effects on auto and triple correlation functions, such
as alinear global loss of energy, and non linear terms which
affects mainly the high frequencies. Attention is focused
on the way the astronomical information is affected by
this kind of detection, especially for the case of the double
stars.

1. Introduction

Observation of weak sources in speckle interferometry re-
quires the use of fast photon-counting cameras. Photons
can be detected one by one as they arrive, with their spa-
tial coordinates and arrival time ; this is the case with,
for example, the PAPA camera (Papaliolios et al. 1985).
The detection can be performed as well frame by frame,
a single frame being the result of an integration of a few
milliseconds ; intensified CCDs like CP40 (Blazit 1987)
belong to this later class of device. Features of these de-
tectors are the large number of pixels and the excellent
stability of the CCDs.

Because the detectors are not perfect, the photon im-
ages suffer from various artifacts, such as geometric distor-
sions or the well-known “photon counting hole” caused by
the centroiding electronics (Blazit et al. 1975). A review of
these problems has been made by Foy (1987). Hoffmann

*: Based on observations collected at the 1.93m of the Obser-
vatoire de Haute Provence, France

(1993) makes a description of possible solutions to the pho-
ton counting hole problem. A more recent paper relative
to this subject has been written by Thiebaud (1994).

The problem we shall examine is somewhat different
to that of the photon counting hole, but appears for sim-
ilar reasons. It is the so-called “clipping” effect of photo-
events ; clipping denotes the effect of a saturation of the
device that does not allow the detector to differentiate be-
tween a single photon and more than one photon. Clipping
basically affects photon cameras of the integration type,
but is also likely to influence sequential ones if possible
dead-time reactions are to be considered.

In practice, these effects are generally neglected ow-
ing to the very low probability of occurence of more than
one photon per pixel for the weak astronomical sources of
interest, giving generally less than one hundred photons
per image. Moreover, these experimental approximations
might appear, at a first glance, to be well supported by the
theoretical approach that describes the photon noise lim-
itation in speckle interferometry as a compound Poisson
impulse process, where it is assumed that the probability
of more than one photoevent is vanishingly small com-
pared with the probability of one or zero photoevents.
Then the signal is modelized as a sum of unit impulses
at different spatial locations. As emphasized by Good-
man (Goodman 1985), this representation assumes that
the detector is continuous in space. Taking into account
the finite dimensions of the pixels of the detectors, the
ideal distribution is integrated and leads directly to Pois-
son statistics for the number of photons occuring in a fixed
pixel size. The ideal photodetected image is given by the
number of photons (theoretically from 0 to co) occuring
in each pixel. The effect of clipping acts on the saturation
of the Poisson law for each pixel.

A technique of clipping is sometimes used in the field
of laser optics where it is applied as a tool for data com-
pression. A few papers deal with the effects of clipping
on speckle interferograms at high light level (Marron &
Morris 1985; Ohtsubo & Ogirawa 1988; Pedersen 1984).
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The case of photon-counting detection has been studied
by Barakat (1988) who gives the expression of the autocor-
relation function (AC) for a point source fully developped
speckle pattern.

In high angular resolution astronomical imaging, the
information destroyed by the atmospherical turbulence,
can be partly recovered by means of statistical functions
of the random instantaneous images, as first shown by
Labeyrie in the early 70’s (Labeyrie 1970). The AC of the
images can give, for example, the angular separation of
a very close double star. The triple correlation (TC) can
be used to recover a diffraction-limited image of the ob-
served object (Weigelt 1991). Clipping affects these sta-
tistical functions and destroy the linear object-image con-
volution relation. A general study has been published re-
cently (Aime & Aristidi 1992) and mathematical expres-
sions were given for the clipped AC and TC ; this paper
will be referenced in this text as Paper I. Other partial
results on clipping and parts of the present paper can be
found in Aime et al. (1990), Aime et al. (1991), Aristidi
at al. (1991).

The photodetected AC and TC suffer from an impor-
tant bias due to the statistics of the photons. Petrov et
al. (1982) have proposed a technique based on a simul-
taneous double detection of the photon-counting speckle
patterns ; the bias disappear if one computes, instead of
the AC, the cross correlation between the two detections
of each image. Some astrophysical results using this tech-
nique can be found in the paper of Thiebaud (1994). These
have been generalized to the TC by Hoffman and Weigelt
(1987) using three simultaneous detections of each image.
Cross AC/TC will be taken into account in our presen-
tation. Nevertheless these functions will be referenced as
AC and TC in the text.

Our present paper is basically a numerical illustration
of Paper I, as announced at the end of it. General rela-
tions of Paper I are summarized in section 2. Section 3
gives some numerical illustrations of single and double
stars speckle patterns under different clipping conditions.
In addition to the mathematical expressions valid for a
fully developped speckle pattern, we have made use of
speckle interferograms of the star Vega in the visible. A
discussion of the results is given in section 4.

2. General expressions for clipped AC and TC
functions

This section is devoted to a brief summary of the basic
equations as derived in Aime and Aristidi (1992). These
equations are valid for spatially stationnary speckle pat-
terns. The main point is that single photon-clipped AC
and TC can be expressed as functions of the multifold
PDF of the event “0 photon” of a perfectly photodetected
image. This later quantity can be directly derived from the
high light level probability density function (PDF) of the
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speckle pattern. The presentation we give here has been
somewhat simplified with regard to that of Paper I.
We use the following notations :

— I(r) denotes the classical integrated intensity falling
on a pixel at position r, I,(r) is the photon-limited
image that could be given by a perfect photon camera
and I.(r) is the single photon clipped image made of
a succession of “0” and “1” where the value “1”7 is
registred for one or more incident photons.

— 7 is the mean number of photon per pixel in I,(r).

— C(p), Cp(p) and C.(p) are the AC of I(r), I,(r) and
I.(r) respectively ; p beeing here the spatial lag vector.

—T(p1.p2), Tp(p1,p2) and To(p1, p2) are the TC of I(r),
I,(r) and I.(r) respectively ; p1 and p, are the spatial
lags.

For a single photon clipped image, the possible events
are of the form of Bernouilli trials. Let us denote as n; the
random variable equal to 1 when one (ore more) photons
are detected i pixel ¢+ and 0 otherwise, and &; the random
variable associated with the contrary event ; ; is equal to
1 for no photon detected in pixel ¢, and 0 otherwise. By
definition we have :
ni+&=1 (1)

The mean number of detected photons per pixel of the
clipped image can be expressed as :
me=E[n]=FEl—-&]=1-E[§]=1—-p1(0) (2)

where E...] denotes the expected value. We have as-
sumed space stationnarity by writing that E[&] is inde-
pendent of the spatial position i. The quantity p;(0) rep-
resent the probability of the event “0 photon” in a pixel.
Since this quantity is not affected by the clipping process,
p1(0) is also the value of p; (n) (the probability of detecting
n photons in a pixel for a perfect photodetected image) for
n = (. This approach can be generalized staightforwardly
to the computation of clipped AC and TC. We have :

Celp) = Ein] = E[(1 — &) (1 - &)

=1- Bl&] - Elg] + El&ig)]

(3)

It is necessary to consider the two cases p = 0 and
p #0. For p=0,i.e. i = j, the product &;§; is equal to £2.
With the 0-1 definition of &;, we can write £ = &;, and
the value of C,(0) reduces to m,. For p # 0 and assuming
space stationnarity, E[;{;] can be written as py(0,0;p),
the probability of the joint occurence of the events 0 pho-
ton for two pixels distant p. The overall clipped AC be-
comes :

e C.(0)=1—p1(0)

(4)
¢ Ce(p#0)=1—2p1(0) + p2(0,0: p)
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Similarly, the TC of the clipped image can be written
as :

Te(p1.p2) = Elninyne] = E[(1 = &)(1 = &)(1 = &)

=1— EB[&] - E[§;] — El&] + E[6ig)] (5)

+E[&&r] + EIE6] — E6i6Er]

Here again we must take into account the particular
values p; = 0 and/or p; = 0 that make some of the spatial
positions 7, j and k identical. We obtain :

¢ 7.(0,0) = 1-—pi(0) = C.(0)

o T.(p1,0) = 1—2p;(0) +p2(0.0;p1) = Colpr)

0 T.(0,p2) = 1—=2p1(0) 4+ p2(0,0;p2) = Celp2)

o To(pi,p1) = 1—2pi(0) +p2(0,0:p1) = Colpr) .

e T.(p1,p2) 1 —3pi(0) + p2(0,0; p1) + p2(0,0; p2)

+p2(0,0; p2 — p1) — p3(0,0,0; p1, p2)

where ps(ny,ng, n3;p1,p2) is the three-fold PDF of the
perfect photodetected image, p3(0,0,0; p1,p2) being the
probability of the event “0 photon” for three different pix-
els p; and p, distant.

Since the variance of the photons affects only the ori-
gin of the AC/TC, cross-correlations may be obtained by
using the general term of equations 4 and 6 for p = 0,
p1 = 0 and py = 0. All the results presented in this paper
as AC/TC are in fact cross-correlations.

Now we need to express pi(0), p2(0,0;p) and
p3(0,0,0; p1, p2). These quantities may be derived from
the statistics of the high light level images. Indeed, high-
light level and photon counting PDF’s are related one an-
other by the Poisson Transform (Goodman 1985). For the
singlefold PDF, we have :

iy = 7122

n!

e P (Q) dQ (7)

where P;(Q2) is the PDF of the perfect intensity image
and a = E[n]/E[Q)] the quantum efficiency of the detector.
We just need to compute this expression for n = 0 and the
above relation can be resumed to :

p1(0)

(8)

/ e ™ Pi(Q) dQ
A

The calculation generalizes easily to two and three di-
mensions :

® p2(0,0;p) = // e~ ) P Q) Qyp) dQy dQ,

.}):i(07070;p1 _/[)2) = /// e*a(&21+522+523)

XPg(Ql, (22./ Qg. P1s pg) dQl CIQQ ng

(9)
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where P, and P; are the two- and three-fold PDF’s of the
speckle images.

At very low light levels, o) <« 1, and one can de-
velop the exponential terms into a power expansion ; equa-
tions 4 and 6 lead to the following approximations :

3

Celp) = Cyplp) = 5 (T(0.p) + Tlp.p)) + T3 (2Q(0,0,p)

+3Q(0,p,0) 4+ 2Q(p,0,0)) + o(a*)
4
Te(p1,p2) = Tp(p1,p2) — % (Q(p1,p2,0) + Q(p1,p2,p1) an

+Q(p1.p2,p2)) + o(a?)

Where Q(p1,p2,p3) is the fourth-order correlation of
the high-light images. The clipping may be considered as
a first approximation in a mixing between statistical func-
tions of different orders. These equations may be used for
an easy computation of the clipped AC/TC at low light
level (typically under 0.01 photon/pixel). A comparison
between the different approximation orders of the clipped
AC is shown in fig. 4.

At that level, we have used two approaches to obtain
a quantitative estimate of the effects of the clipping on
AC and TC. The first one is based on the use of real data
to compute high-light level PDF’s. The second one is fully
theoretical and assumes that the complex amplitude of the
point source speckle pattern is a circular gaussian random
variable.

2.1. Use of real data to simulate clipped AC and TC

The data material consist of speckle interferograms ob-
tained at the 193 cm telescope of the Observatoire de
Haute Provence, France, on an unresolved star (Vega).
The telescope was used in Cassegrain configuration (fo-
cal length of 30 m) with a x15 microscope objective and
a red filter. The images were captured using an intensi-
fied video CCD camera. The exposure time was 20 ms for
each frame. An example of such images is shown in fig. 2.
Altogether 1200 images were recorded and processed. We
denote as V(r) these images.

The simulation of speckle patterns corresponding to
the observations of a double star, or of a structured ob-

ject, was obtained by convolving each individual image

with the intensity distribution of the desired object, ow-
ing to the object-image convolution relation valid in the
isoplanetism domain (Labeyrie 1970). To make a complete
description of a double star having an intensity ratio 3 and
a separation vector d, one can simply write the quantity
V(r) + aV(r — d) for each instantaneous frame.

The clipped AC/TC were computed using eqs. 4
and 6 ; the quantities p;(0) and p»(0,0; p) are estimated
as follows :

(10)
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Fig. 1. Graphs of the antocorrelation functions of fully developped point-source speckle patterns computed using eq. 4 with

a coherence factor r(p) = 2%, corresponding to a circular aperture telescope, s being the size of the speckle. (a) plots

of the ratio C.(p)/C(0) for several values of the mean number of photon per pixel fi. These curves show the influence of the
multiplicative factor A defined in relation 13. Note that : (i) the effect is neglectible for 7 smaller than 1072 where A = 0.98
and (ii) the attenuation affects mainly the small values of the spatial lag p, i.e. near #(p)=1, due to the *(p) dependency in the
power expansion of A (see relation 13). (b) The same functions drawn between their respective minimum and maximum ; this
is to put in evidence the “super-resolution” non-linear effect caused by the clipping. It is quite insensible for 7 smaller than 0.1.

1. Bin the intensity value of the synthesized speckle pat-
tern over 64 integer values.

2. Compute the histogram and joint-occurrence his-
tograms of the binned images. Normalise them so that
their integral is 1. Because of the binning procedure,
the mean m is of a few tenths of units.

3. Allow the parameter a to vary so that the average
number of photon 72 takes the required value. Compute
the quantities p; (0), p2(0,0; p) and p3(0,0,0; p1, p2) us-
ing relations 8 and 9 (Poisson transforms of the above
joint occurence histograms).

We would like to point out that this approach is not a
complete simulation since we do not start from images of
photon impacts. However the advantage of our method is
triple. First, it allows us to compute the AC/TC for sev-
eral values of the average number of photons per pixel from
one set of intensity PDF’s, by adjusting the parameter o
to a relevant value. Second, it is easy to compute cross-
correlations, while in a complete simulation one would
generate two photon-counting images by individual inten-
sity pattern. The third advantage is that the SNR of the
power spectrum obtained by this procedure is that of the
high-light level images.

2.2. Analytical expressions for the Gaussian case

For a fully developped speckle pattern , i.e. when the com-
plex amplitude of the wave at the focus of the telescopeis a
Gaussian circular random variable, analytical expressions
are available for p;(0), p2(0,0;p) and p3(0,0,0; py1, p2).

Fig. 2. Typical speckle interferograms of the star Vega (« Lyr)
observed at the 193 cm OHP telescope (the field of the image
is 2.9 arcsec and the value of rg is about 7 cm).

For the point source the expressions of the probabilities
p1, p2 and ps are :

1
14+n

e p1(0) =

1
14+ 2n+n2(1—1r2(p))

® p2(0,05p) =
® p3(0,0,0;p1,p2) = [(1+7)’
= (r*(p1) +1r2(p2) + 1% (p2 — 1))

+20°r(p1)r(p2)r(p2 — p1)]
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where r(p) is the correlation function of the complex
amplitude for two points distant p of the incident wave.
r(p) gives an idea of the spatial extension of the shape
of the speckles. It contains in particular the pupil of the
telescope (Goodman 1985). The demonstration of above
relation is very briefly given in the appendix.

3. Results
3.1. For the point-source

The study of the point source can provide interesting in-
formations upon the modifications that may occur on the
AC and the TC through the clipping process.

3.1.1. On the AC

One can distinguish between two effects :

The first one is a linear multiplicative coefficient A
which weakens all the values of the AC. This attenuation is
visible on theoretical curves valid for the Gaussian model
(fig. la) as well as on the images of Vega (fig. 3a). The
clipped AC can be written combining eqs. 4 and 12 :

2 1
1+n + 14 2n+n2(1—1r2%(p))

Culp) =1 - (13)

The coefficient A is defined as the ratio of clipped to
unclipped AC and is constant at the first order in r(p) ;
the expression of the unclipped AC has been given by

Goodman (1985) : C(p) = R%(1 +1r%(p)).

v Celo) - 14a(=r(p)/(1+r2(p))
TG T THABEAG =20 + 20 = ()]

(14)

which can be approximated when « is small by :

1

M Ay

(15)

As expected, A goes fainter as i increases ; it tends to-
wards 1 when # — 0 which is not surprising owing the
very low probability of the occurence of two simultaned
photoevents in that case. In the asymptotic case where
« — 00, all the pixels of the image become saturated and
the AC tends towards a constant (since space stationnar-
ity is assumed througout this paper).

Equation 10 gives an approximation of the clipped AC
for small values of 7 : it is equal to the unclipped AC
plus correcting terms of higher statistical order. The two
first correcting terms (triple correlation and quadricorre-
lation), given in eq. 10, are plotted in figure 4a for # = 0.1.
The two first correcting terms give a good approximation
of the clipped AC at this level of light. Curves 4b are the
corresponding transfer function, but for n = 1. They were
normalized between 0 and 1 in order to put in evidence the
non linear effect. They show that this effect is not repre-
sented by the first two correcting terms, which is not very
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surprising because either the bispectrum and the Fourier
transform of the quadricorrelation are spatially limited by
the cutoff frequency of the telescope.

The second effect appears only when the number of
photon per pixel is high (7 > 0.1) and can be interpreted
as an asymptotic behaviour with no real application to
astronomy. It consists in a slight modification of the AC s
curve shape : the width of the central peak decreases as «
increases. This is clearly visible on the analytical curves
(fig. 1b) but not on the AC of Vega (fig. 3b). The corre-
sponding transfer functions are plotted in fig. 5 ; part of
the energy is spread beyond the cutoft frequency of the
telescope. This effect may be understood as the signature
of the higher orders statistical terms that appear in the
AC when the clipping occurs.

0.5 1 1.5 f/f

Fig. 5. Clipped transfer functions calculated with the theoret-
ical model. The parameters of the computation are the same
than those of figure 1. When # > 0.1 photon per pixel, some
energy is spread beyond the theoretical telescope cutoff fre-
quency f..

3.1.2. On the TC

The effects are qualitatively the same for the AC and for
the TC : a global loss of energy, and non-linear effect of
contration of the central peak of the point-spread TC.

Regarding to the linear effect, we can define a coef-
ficient A’ as the ratio of clipped to unclipped TC ; the
expressions of the clipped TC are deduced from egs. 6
and 12. For small values of a it apprxoximates to :

1

AN~y ———
(1_}_77'/)3

(16)

An illustration can be found in fig 6. The TC is
normally a fourth dimensionnal function of the vectors
spatial lags p1 and ps, these vectors have been taken
aligned so that, the TC becomes two dimensionnal. A one-
dimensionnal cut along the second bissector (p; = —py),
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Fig. 3. Graphs of the clipped autocorrelation functions calculated from 1200 hight-light images of Vega using the procedure
descibed in section 2.1. (a) Drawn to scale for different values of 77, the curves show the linear multiplicative coefficient A defined
in the text. The behavior of these simulated AC appears to be in good agreement with the theoretical model (see figure 1). (b)

The same curves are drawn between their respective maximum and minimum, in order to put in evidence the non-linear effect

of narrowing of the peak of the AC ; this effect is almost negligible here, but one must keep in mind that the dynamic of the

AC becomes very small where i increases. As a consequence we can expect that the non-linear effect is very difficult to see on

real data.
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0. 008}
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-4F
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\} . . .
8¢ 10 12 14
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Fig. 4. lllustrations of eq. 10. (a) Graphs of the clipped AC of the PSF of a circular aperture telescope, for n = 0.1 photon/pixel.

The full line is the exact calculation and the dashed lines are the three different levels of approximation appearing in eq. 10, i.c.
the unclipped AC, the unclipped AC plus the first term in triple correlation, and the unclipped AC plus the two first terms. (b)
Graphs of the transfer functions but for a higher level of light (7 = 1 ph/pix). The functions are normalized between 0 and 1
in order to put in evidence the non-linear effect. All the curves are identical excepted the exact one showing an extension after

the cutoff frequency referenced by f. on the graph

plot on fig 6b shows the effect of A’. Note that the at-
tenuation is worse for the TC than for the AC, according
to the term in (1 + 7)™ for the TC, against the one in

(14 n)~? for the AC.

The nonlinear effect has been also investigated on the
TC. We show on figure 7 the FWHM of the point-spread
AC and TC, as a function of the mean number of pho-
ton per pixel n. These curves have been calculated using
the analytical model with r(p) = exp(—p?/s?). It appears

that this effect may be neglected for n < 0.01 where the
FWHM of the clipped AC/TC differs from less that 1%
from the unclipped functions. Note the strange behavior of
the FWHM of the TC, which present a bump near n = 0.1.
The TC is less sensitive to the clipping than the AC in the
high light level range, while the AC gives more accurate
results around 0.1 photon per pixel.
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Fig. 6. Illustration of the clipping on the TC of a point-source speckle pattern calculated analytically from eqs. 6 and 12 with

the same coherence factor r(p) than fig. 2. (a) the two-dimensionnal plot of T..(p1, p2)

; the blanck line is the direction (p2 = —p1)

along which are calculated the curves (b) the influence of the multiplicative factor A’ and (c¢) the effect of contraction of the

pincipal peak. (Curves normalized between their maximum and minimum)
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Fig. 7. Plot of the FWHM of the peak of the clipped AC
(dashed line) and TC (full line), as a function of 7. For the
TC the calculation has been made along the second bissector
(p2 = —p1). The curves have been computed with the ana-
lytical model, with (p) = exp(—r?/s?), (s is the size of the
speckle). They have been normalised to the FWHM of the un-
clipped functions.

3.2. Visibility functions of a resolved star

Among the astronomical objects frequently observed in
speckle interferometry, one finds the giant stars close
enough to be resolved by the large telescopes or by the
interferometers (Foy 1991; Quirrenbach 1991). This sec-
tion will present by means of simulation the effects of the
clipping on the visibility functions of a giant star modelled
by an uniform disc.

The visibility function V(f) of an object is defined
by the ratio of the power spectrum of speckle interfero-
grams of the object, to the power spectrum estimated on

a close reference star. The object-image convolution rela-
tion (Roddier 1988) predicts that V(f) identifies to the
square modulus of the Fourier transform of the object, an
Airy function in our case.

The calculation was made as follows :

— Simulation of 1000 speckle interferograms correspond-
ing to a 2 m circular aperture telescope operated at a
wavelength of 5000 A, and a turbulence characterized
by a Fried parameter ry = 20 cm.

— Computation of the clipped power spectrum W, ( f) for
a mean number of photon per pixel n,.

— Convolution of all the speckle patterns by an uniform
disc of diameter 6 pixels

— Computation of the clipped power spectrum W,(f) for
a mean number of photon per pixel n,.

— Calculation of the visibility function V(f) = 5=

The clipping occurs here at two levels, affecting both
the power spectrum of the object and of its reference. Very
often the reference star is choosen brighter than the object
for SNR reasons ; in such a case the clipping effects are
not the same on bhoth cases.

The results of the simulation are presented in figure 8.
Several visibility functions have been calculated for var-
ious values of 7, and n, varying between 0.001 and 0.1
photon per pixel. The most interesting result concerns
the low frequencies. When n becomes greater than 0.01
the curves present some artifacts near the atmospheric
cutoff frequencies ; the visibility functions look like those
of a giant star surrouded by a shell. Some astrophysical
misinterpretations could occur if the clipping effects are
overlooked. The remaining of the curves is not really af-
fected, in particular the first minimum of the Airy function
is always very clearly seen and gives the diameter of the
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star. We want to emphasize that the interferograms gener-
ated by the simulation algorithm are noise free (no photon
noise, no additive electronical or thermical noise).

V()
\ unclipped
. = > —102
ol w m—— No =np =10
o = 1072, np = 1073
PIRTARES =102, ny =107
b
-4
-6
-8
-10
‘ ‘ ‘ f (pixels)
0 f 10 20 30 40 f
a 9

Fig. 8. Plots of the visibility function of a resolved circular
object. These curves were computed using the approximation
of eq. 10 on simulated speckle interferograms (see text). i, and
n. denotes here the mean number of photon per pixel of the
pst and of the object respectively. f. and f, are the telescope
and the atmospheric cutoff frequencies.

3.8. Case of a double star
3.3.1. On the AC

The clipped AC and TC are calculated from eq 4 and 6.
The probabilities p; (0), p2(0,0; p) and p3(0,0,0; p1, p2) are
either calculated analytically as describes in section 4 of
Paper I or estimated as joint-occurence histograms from
a set of images.

For the analytical model, the mathematical fomalism
is heavy and we made abundant use of the software Math-
ematica from Wolfram Research. A simplified expression
can be given assuming that the speckles are J-correlated ;
the clipped AC of a double star of separation d and in-
tensity ratio 3 is in this case a sum of three Dirac delta
functions weighted by the following terms :

1

c GO =l ea

o Ce(d) 1—2[(1+n)(1+6n)]7"
(17)
+[(1 4 a)(1+ BR)(1+ 7+ pR)] "

2

1

L= (14 n)(1+ 3n)

o Cp#d) =

The peak corresponding to p = d is traditionnaly used
to estimate the intensity ratio 3 of the double star. In
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a ne10"3
0.9 nl=1072
A -
7 -
Z o8 ~ =
> \~\
i) ni=0.
e
=
e
0.6
h=0.1
OB 0.2 0.4 0.6 0.8 1

Intensity ratio 3

Fig. 9. These curves represent, for a number of pho-
tons per pixel varying from 107* to 0.1, the quantity
h’(:lipp(td/hun(:lipp(‘d as a function of the intensity ratio 3. h
denotes here the height of the secondary peak of the autocor-
relation of a double star. As we can see, the clipping decreases
the height of the peak. This effect may be of importance if the
clipping rate is high : for 7 = 0.1 photon/pixel, the intensity
ratio can be underestimated by 40 %.

ideal conditions and high light level, the height of the peak
(minus the continuous term) is proportionnal to 3 ; this
is no longer the case in clipping conditions. The height h
of the peak is equal to :

h=Cup=d)—Celp #d) =
(18)
A2B(1+n) 2(1+nB) 21+ n+ns) "

When 72 = 0, h tends towards the value 3n? valid in un-
clipped conditions. However, some correcting terms must
be applied during the measurement of h to obtain a pre-
cise estimation of 3. Figure 9 shows the variation of the
error as a function of 7 and 3. It may lead to an under-
estimation of about 40 % when i1 becomes greater than
0.1 photon per pixel.

The simulation agrees with the above theoretical re-
sults. About 1000 images of Vega were processed to sim-
ulate a double star with 8 =1 and p = 10 pixels (about 3
times the size of the speckle). The clipped correlations are
plotted on figure 10 ; the secondary peak decreases as 7
increases, and for n = 0.1 we find hclipped/hunclipped o~
0.73. The theoretical model give 0.57, but it does not take
into account the AC of the long-exposure image, assumed
constant in the Gaussian model (space stationnarity).

Another interesting feature concerns the non-linear ef-
fect. A simulation of clipped AC of double stars has been
made using the analytical model. Figure 11 represents the
visibility function of a well resolved star in conditions of
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from images of Vega. The size of the speckle is s o~ 3 pixels, the

Fig. 10. Functions

intensity ratio of the double star is 3 = 1 and its separation is
10 pixels. The correlation functions have been drawn between

= 2 to 20 (the firsts points are not plotted in order to avoid
the Dirac peak at the origin). These curves show the loss of
dynamic of the AC and particularly of the peak at p = d when
the clipping increases.

strong clipping (n = 1) and of no clipping conditions. The
fringes relative to the double star seem to prolongate be-
vond the theoretical cutoff frequency when the clipping
is strong. This curious effect may be partly understood
if one considers that clipping a function introduces high
frequencies in its spectrum.

Another calculus has been made for a close double star.
The separation of the binary star was just lower than the
size of the speckles, so that the star could not be resolved
in normal conditions. The result is illustrated in figure 12.
The unclipped AC does not show any duplicate structure,
but when the number of photon per pixel becomes greater
than 10 or so, we can see that in clipping conditions, the
secondary peak appears at p equals to the star separation.
This may be understood as a consequence of a consequence
of the contraction of the point spread AC. Unfortunately
this effect is unpracticable for use : firstly because we do
not use any more photon-counting detectors at these levels
of light, secondly because the ratio h/C.(d) ~ 10~ for
fi = 10 ; the SNR required to see this effect would then be
of the order of 10*, which corresponds to several hundreds
of millions of instantaneous clipped images.

3.3.2. On the TC

The 4-dimensionnal TC T.(p;, p2) reduces to two dimen-
sions when the vectors p; and p; are colinears. For a dou-
ble star of separation vector d, the TC can be calculated
along the d direction.

As shown by Lohmann et al. (1983), it is possible to
obtain a true image of the double star by applying the

V(i)

1.4F

. |
Undlipped /A 1} /Y

1.2¢ n=1

f (pixels) |

0 10 20 30 40

Fig. 11. Visibility functions of a double star computed using
the analytical model with r(p) = 2%, valid for a circular
pupil telescope, s being the size of the speckle (s = 2 for this
run). The parameters of the double star are : intensity ratio
B = 1 and separation d = 6 pixels. The visibility function is
estimated by dividing the power spectrum of the double star
spekle patterns by the power spectrum of the psf (both are
analytic). The full line is for perfect (unclipped) photodetected
images, the dashed line is for extremly strong clipped detection
(7 =10). f. is the telescope cutoff frequency.

object-image convolution relation valid on the TC in ab-
sence of clipping :
T(p1,p2) = S(p1,p2) * Op1.p2) (19)
where S{(py, p2) is the TC of the psf (traditionnaly es-
timated on a close reference star) and O(p1, p2) is the dou-
ble star’s triple correlation, which contains several peaks
whose relative heights may give the intensity ratio of the
stars as illustrated by figure 13.

The starting point for image reconstruction in the
triple correlation technique is the TC of the object (or
the bispectrum, its Fourier Transform). A review of this
technique has been written by Weigelt (1991). The first
step before any processing is the compensation of the TC
of the PSF (estimated on a reference star nearby) by in-
verting eq. 19.

In the case of a double star, the intensity ratio may be
estimated directly without deconvolution from the TC of
the zero-mean signal T%(p,, p2) (which is also the third-
order cumulant). Both functions, calculated with the an-
alytical model, are represented in figure 14. The calculus
has been performed by means of eqs. 3.7 and 3.8 of Aime
and Aristidi (1991). This calculus gives :

T(d,0)
5= i) (20)
This expression remains valid for the photodetected
speckle patterns ; the photodetected TC Ty(p1, p2) is pro-
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-15 -10 -5 0 5 10 15

Fig. 14. Comparison of (a) the triple correlation T'(p1, p2) of a Gaussian double star speckle pattern at high light level and
(b) the triple correlation of the zero-mean speckle patterns T9(p1, p2) (this quantity is also known as the triple cumulant). The

parameters of the double star are :

separation d = 10, intensity ratio # = 0.3. This latter function better ressembles the TC of

a sum of two Dirac peaks : the vertical, horizontal and diagonal lines have disappeared, making easier the determination of .

C(p)

1
' \ —— Unclipped
N -———- n=01
0.8¢ t \ ————— n=1
' ‘\ .......... ﬁ:lo
0.6f .
0.4}
0.2
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Fig. 12. Clipped AC of a double star speckle pattern computed
analytically for a coherence factor #(p) = exp(—p?/s®). The
star separation is 0.8 of the size of the speckle s. The intensity
ratio is # = 1. One can see that althought the star separation
is under the theoretical resolution, a strongly clipped detection
(7 = 10) makes a second peak appear on the AC at the star

separation : this is what we call the “super-resolution effect”.

portionnal to the high light TC. The zero-mean photode-
tected TC is then :

T)(p1,p2) = Tp(p1p2) + 278°

—n(Cp(p1) + Cpp2) + Cplp2 — p1))

P2
T L ¢

IR

433
@ > g
B (2

p? B

Fig. 13. TC of a double star modelled by the function
6(r) + B4(r — d) (as in the frame at the upper left of the fig-
ure). The TC is the sum of several peaks whose intensities,
written on the scheme, are either 8 or 82 (1 4+ 38° at the ori-
gin). The intensity ratio 8 of the stars may be given by the

ratio T'(0,d)/T(d,d).

This technique has been applied for clipped speckle
patterns ; we have computed the quantity

T (pr,p2) = Te(pr, p2) + 2m
(22)
—me(Celpr) + Colpo) + Celps = p1))

Figure 15 shows the ratio § = T%(d,0)/T?(d,d), i.e. the
estimator of the intensity ratio 5. A good estimation is
made when the clipping rate is pretty small (7 < 1072)
but where 3 approaches zero, the ratio has negative val-
ues : this is due to the substraction of the correlation terms
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Fig. 15. Variation of B (see text) as a function of g for differ-
ent clipping rates. This concerns the clipped TC’s of a double
star speckle pattern computed with the analytical model with
r(p) = exp(—p°/s”) and s = 1.

in eq. 22. Thus this technique is not applicable in presence
of clipping as far as one wants a precise determination of
s.

/

4. Conclusion

We have given in this paper the results of the effects
of clipped photon detection in Labeyrie’s and Weigelt’s
speckle techniques (Labeyrie 1970; Weigelt 1977). The
problem has been approached both by a theoretical way
and a numerical simulation using real data on the bright
star Vega. Three examples have been studied : an unre-
solved point source, a double star and a circular resolved
object. For the point source the two approaches have been
used and have given comparable results. For the double
star the study has been fully theoretical. For the resolved
object, the analytical expressions are very complicated
and only the simulation has been tested in this case.

The theoretical approach, under the assumption that
the complex amplitude of the wave at the focus of the
telescope is a circular Gaussian random variable for a
point source speckle pattern, allowed us to obtain analyt-
ical expressions for the clipped autocorrelation function.
The computation was made using either the probability
density functions (PDFs) of the speckle pattern, or the
moment generating functions (MGF's) as described in Ap-
pendix A. The complete formalism, published recently in
Paper I, is summarized in the appendix.

The main interest of our study is in the numerical
applications, i.e. the computation of the energy transfer
functions (ETFs) (two-dimensional Fourier transforms of
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the autocorrelations for a point source speckle pattern)
and the application to structured objects. Under clipping,
we have roughly to consider two effects that degrade the
ETF : a linear, frequency-independent, loss of energy, and
a non-linear deformation of the ETF curve that spreads
energy beyond the theoretical cutoff frequency. The two
effects are of different magnitude ; for example, the global
attenuation of the ETF is already of 20 % when 0.005 % of
the pixels are clipped (corresponding to a average number
n = 0.01 photons per pixel). The non-linear effect requires
a higher level of clipping to be visible. For n = 0.1 photons
per pixel, the rate of non-linearity defined by the percent-
age of energy transferred beyond the cutoff frequency is
only 0.08 %. It becomes significant when n becomes of the
order of unity ; this effect is therefore an asymptotic be-
havior with no real interest in astronomy. Altogether the
main conclusion of this study is that the clipping may be
neglected when 72 < 10~2 photon per pixel.

For a double star speckle pattern, it is interesting
to note that the value of the ratio between two compo-
nents may be misestimated by factors which can reach
40% under strong clipping conditions. This effect may be
of importance if one considers the application of binary
star measurements to fundamental astronomy (Mc Allis-
ter 1988).

The theoretical results are found to be well supported
by the numerical simulation performed on more realistic
speckles. As we already emphasized it in the body of the
paper, the technique which consists in computing first an
estimate of the intensity second PDF and then applying a
Poisson transform was found of interest from a SNR, point
of view.

The theoretical study and the numerical simulation
were made for single-clipped speckle patterns (number of
photons limited to 1). The computation could be easily
generalized to the N-clipped case if we had to consider a
camera able to detect up to 2, 3 or /N photons ; this would
be of interest for example whith cameras like electron-
bombarded CCD (Cuby 1990) which allow some dynamic
in the photoevents.

Appendix A : Analytical expressions of AC and
TC for a fully developped speckle pattern

A.1 Use of the moment generating function (MGF) to ex-
press the probability of the zero-photon event

The MGF M (v) can be defined as the Laplace transform of
the probability density function P(2) (Starck and Woods
1986) :

M(v) = / e’ P(Q) dQ (23)

This expression can be generalized to the twofold and

threefold MGF :
17\/12(’1}1, V23 p) = /CU'Q'+U?Q2 PQ(Ql, 92; p) dQl ng (24)
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M;s (v, v9,v35 p1,p2) = / eVt H il tusily
(25)

XP3(QL QQ, Qg;[)l,[)z) d.Ql dQ2 dQ3
By comparing these expressions with equations 8 and 9

we can write the probabilities pi(0), p2(0,0;p) and
p3(0,0,0; p1, p2) as functions of the high-light MGF’s:

L (0) = 17\/[1 (—O)
¢ p2(0,0;p) = Ma(—a, —a; p) (26)
¢ 3(0,0,0;p1, p2) = Ma(—ax, —a, —a; p1, p2)

Substituing relation 26 into 4 and 6 we obtain the ex-
pressions of the clipped AC from MGF’s :

e C.(0)=1- Mi(—a)
(27)
e Cp#0)=1-2M(—a)+ My(—a, —a;p)

and similarly for the clipped TC :

¢ T.(0.0) = 1—M(—a) = C.(0)
* T.(p1,0) = Ce(pr)
¢ T:(0,p2) = Ce(p2)
o Te(pr.p1) = Celpr)

(28)
e T.(p1,p2) = 1 =3Mi(—a) + Ma(—a,—a; p1)
+ My (—a, —a; pa)
+My(—a, —a; p2 — p1)

—M;(—av, —a, —c; p1, p2)

A.2 Expression of the MGF of an extended astronomical
object speckle pattern

This section is a summary of a paper of Aime and Aristidi
(1991) that gives the N-fold characteristic function of an
extended object speckle pattern under the hypothesis that
the complex amplitude of the wave on the focus of the
telescope is Gaussian.

An extended object can be represented by N points
weighted by the intensities o, in the form :

N

O(z) = Zan 8z —zy) (29)
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For a continuous object, N is the number of sampling
pixels. The object can also be represented as a diagonal
matrix D of rank N whose coefficients are the «, :

€3]
(30)
N

We define now the N x N covariance matrix R(p) of
the complex amplitude of the wave at the focus of the
telescope, whose coefficient are :

Rij(p) = r(wj—ai+p) = E[¥(x; +p)¥(x;)]  (31)

where U(z) is the complex amplitude of the wave in the
focal plane for a point-source (it is assumed gaussian in
this presentation) ; r(p) is then covariance of ¥(z) (also
called “complexe coherence factor” by Goodman (1985)).

The singlefold, twofold and threefold MGF are given
as the inverse of the determinant of a matrix :

(34)

M (v) = det * (I—vR(0)D) (32)
I o oY — 1 {I-=uR(0)D —uvR(—p)D
My (vi,vq;p) = det ( —oR(p) I— 5, R(0)D (33)
Ms(vy,v9,v35p1, pa) = det -t
I-uR(O)D —uv3R(—p1)D —v3R(—p2)D
—’UlR(pl)D I- DZR(O)D —1’3R(p1 - pg)D
—u1R(p2)D  —uv2R(p2 — p1)D I-v;R(0)D

where I is the N x N unitary matrix.

A.3 Expressions for the point-source speckle pattern

For a point source, the above defined matrix D reduces to
one value representing the intensity of the point-source.
The expressions of the MGFs become :

1

1—muv

_/7\/;’[1 (l/) =

1

1—mu)(1—muvy) —m

My (v1,v9;p) = ( 5

vivar?(p)

M (v1, 02,035 p1, p2) = [(1 = muy)(1 = muz)(1 = mus)
—mAuvavs (r(p2)r(=p1)r(pr = p2)

+r(p1)r(=p2)r(p2 — p1)) (37)

—m2vivg(1 — muy)r?(pa) — m*vive(1 — mus)r?(py)

2

—m?vgug(1 —muoy)r¥(ps — p1)] !

where m is the mean of the high-light speckle images.
By applying equations 26 we obtain after a little algebraic
manipulation the expressions of p;. p» and p3 given in
section 2 (equation 12).
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