
A&A manuscript no.(will be inserted by hand later)Your thesaurus codes are:03.13.12, 03.20.1, 03.20.2, 08.02.1, 08.09.1, 08.09.2 ASTRONOMYANDASTROPHYSICS27.12.1996Imaging binary stars by the cross-correlation technique?�E. Aristidi, M. Carbillet, J.-F. Lyon, and C. AimeD�epartement d'Astrophysique de l'Universit�e de Nice { Sophia Antipolis, U.R.A. 709 du C.N.R.S., Parc Valrose, 06108 NiceCedex 2, FranceReceived; acceptedAbstract. We present in this paper a technique for imaging binary stars from speckle data. This technique is basedupon the computation of the cross-correlation between the speckle frames and their square. This may be consideredas a simple, easy to implement, complementary computation to the autocorrelation function of Labeyrie's techniquefor a rapid determination of the position angle of binary systems. Angular separation, absolute position angle andrelative photometry of binary stars can be derived from this technique. We show an application to the bright doublestar � Sge observed at the 2m Bernard Lyot telescope.Key words: Methods: data analysis { Techniques: image processing { Techniques: interferometric { binaries: close {Stars: imaging { Stars: individual: � Sge1. IntroductionProcessing binary stars by speckle interferometry (Labeyrie, 1970) leads to a 180� ambiguity in the measured positionangle (PA). This is known as \quadrant ambiguity". Several techniques of speckle imaging can solve the problem,among which the techniques of Knox-Thompson (Knox and Thompson, 1974), shift-and-add (Bates, 1982) and specklemasking (Weigelt, 1991). A review of these techniques has been made by Roddier (Roddier, 1988). As they aim toreconstruct the image of any extended object from its specklegrams, these techniques usually require a lot of computerresources and processing time. They are not really well adapted to the double star problem: observers want to measurethe separation and the PA of many stars a night and need a fast (near real-time) processing. Several techniqueshave been suggested for this purpose; for example the Directed Vector Autocorrelation (Bagnuolo et al., 1992) whichprovides both the separation and absolute PA, the \fork" algorithm (Bagnuolo, 1988) based on the analysis of fourequidistant points in the double star's specklegrams or the probability imaging technique (Carbillet, 1996b) based onthe computation of twofold probability density functions of the specklegrams. These later techniques require a priorknowledge of the star separation which is usually measured from the power spectrum.We propose a technique based upon the computation of a quantity very close to the autocorrelation function (AC):the cross-correlation (CC) between the specklegrams and their square. This function can be written as a slice of thetriple correlation obtained for a speckle masking vector equal to zero. It is a two-dimensional function. For a doublestar, this quantity at �rst glance looks like the AC: a central peak surrounded by two smaller ones. These secondarypeaks, identical in the AC, are dissymetric for the CC, allowing a quick diagnostic of the relative position of the twostars. The CC is almost as easy to compute as the AC, does not require the prior estimation of the power spectrum,and is then suitable for real-time processing. It also permits, under some hypothesis which will be developed in thetext, the determination of the magnitude di�erence between the stars.This paper is organized as follows. Section 2.1 de�nes the statistical function we use, and derives relevant expressionsfor the double star. Section 2.2 describes the technique proposed to process real star data. We shall see in particularthat the object-image convolution relation valid for the AC does not apply here and we propose a solution to overcomeSend o�print requests to: �E. Aristidi? Based on observations made at 2m Bernard Lyot Telescope, Pic du Midi, France.



2 �E. Aristidi et al.: Imaging binary stars by the cross-correlation techniquethis di�culty. Section 3 is devoted to low-light level and photon bias. Application of the CC technique is investigatedfor clipped photon-counting specklegrams (where the number of detected photons is \0" or \1").2. General expressions2.1. Cross-correlation/spectrum between a double star's image and its squareIn this paper one-dimensional notation will be used for simplicity, the extension to two dimensions being trivial. Theintensity of a double star O(x) can be modeled as the sum of two unit impulses distant d and weighted by the intensityratio �, i.e.:O(x) = �(x� d2 ) + ��(x+ d2 ) (1)Cross-correlationWe denote as KO(�) the cross-correlation (CC) between O(x) and its square. KO(�) is de�ned asKO(�) = Z 1�1O2(x)O(x+ �) dx (2)This function is a slice of the triple correlation of O(x) de�ned as (Weigelt, 1991)TO(�1; �2) = Z 1�1O(x)O(x+ �1)O(x+ �2) dx (3)we have KO(�) = TO(0; �).For a double star, KO(�) becomesKO(�) = (1 + �3)�(�) + �2�(� � d) + ��(� + d) (4)This quantity may be compared with the AC C(�) of the double star O(x)C(�) = (1 + �2)�(�) + ��(� � d) + ��(�+ d) (5)Both C(�) and KO(�) are composed of a central peak surrounded by two smaller ones distant d (see �gure 1). For theAC, these two peaks are symmetrical whatever the value of �. This is why Labeyrie's speckle interferometry cannotgive the relative positions of the two stars when observing a binary system. The CC KO(�) presents two dissymmetricalpeaks of ratio �. The relative position of the peaks is those of the stars in O(x). Using this quantity in double star'sspeckle interferometry, rather than AC, should give the position angle (PA) of the binary without any ambiguity.
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�E. Aristidi et al.: Imaging binary stars by the cross-correlation technique 3Cross-spectrumIn the Fourier domain, the cross spectrum (CS) K̂O(u) between O(x) and its square is the Fourier transform of KO(�).It is a complex quantity whose real and imaginary parts are:Re[K̂O(u)] = 1 + �3 + �(1 + �) cos(2�ud)Im[K̂O(u)] = �(�� 1) sin(2�ud) (6)Both are sinusoidal functions of period 1d . The amplitude of the real and of the imaginary part gives the valueof � without any ambiguity. But information concerning the relative position of the stars is fully contained in theimaginary part of K̂O(u). Let s be the slope of Im[K̂O(u)] at the origin:s = � dduIm[K̂O]�u=0 = 2�d�(�� 1) (7)We note that s < 0 when � > 1 and s � 0 when � � 1. See �gure 2 for illustration.
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Fig. 2. Real and imaginary parts of the CS between a double star O(x) and its square. Both �gures are for an intensity ratio� = 0:5 between the two stars. Up: brighter star on the left, down: brighter star on the right. The real part of the CS is notsensitive to this orientation contrary to the imaginary part: its slope at the origin is positive in the �rst case and negative inthe second one.2.2. Estimation of K̂O(u) from speckle dataWe denote as I(x) the instantaneous double star's specklegrams and S(x) the corresponding point-spread function(PSF). Assuming isoplanatism, we can writeI(x) = S(x � d2) + �S(x + d2 ) (8)We denote as KI(�) the CC of I(x) and KO(�) the CC of S(x).KI(�) = hZ 1�1 I2(x) I(x + �) dxi (9)



4 �E. Aristidi et al.: Imaging binary stars by the cross-correlation techniquewhere hi denotes ensemble average. From eqs. 2 and 3, we have KI(�) = TI(0; �) and KS(�) = TS(0; �).Unfortunately we can't �nd between KI (�) and KS(�) the simple convolution relation that exists between thecorresponding full triple correlations. Inserting the value of I(x) of eq. 8 into eq. 9, a simple calculation gives:KI(�) = (1 + �3)KS(�) + �KS(� + d) + �2KS(� � d) + 2�TS(d; �) + 2�2TS(�d; �) (10)This can be written as a convolution product plus a bias termKI(�) = KS(�) �KO(�) +B(�) (11)where the bias term isB(�) = 2�TS(d; �) + 2�2TS(�d; �) (12)It is di�cult to estimate and subtract this bias from speckle data because of the presence of the unknown factors2� and 2�2. Nevertheless we shall see that B(�) vanishes if we consider zero-mean specklegrams in the case of a starseparation large with respect to the speckle size s.We call ~S(x) and ~I(x) the zero-mean specklegrams of the PSF and the double star:~S(x) = S(x) � �S~I(x) = I(x) � �I (13)We respectively denote as ~mS , C~S(�), K~S(�) and T~S(�1; �2) the mean (with obviously ~mS = 0), the AC, the CC andthe triple correlation of ~S(x). We denote as K~I (�) the CC of ~I(x). From eqs. 12{14 we haveK~I(�) = K~S(�) �KO(�) + 2�T~S(d; �) + 2�2T~S(�d; �) (14)Let us consider the term T~S(d; �). We haveT~S(d; �) = hZ ~S(x) ~S(x+ d) ~S(x+ �)dxi = E[ ~S(x) ~S(x+ d) ~S(x+ �)] (15)where E[�] is the mathematical expectation of �. We have assumed that d� s, so ~S(x) and ~S(x+d) are uncorrelated.We can distinguish 3 cases:1. � <� s:~S(x) and ~S(x+ �) are correlated; ~S(x+ d) is uncorrelated both with ~S(x) and ~S(x+ �), so:T~S(d; �) = E[ ~S(x+ d)]:E[ ~S(x) ~S(x+ �)] = ~mSC~S(�) = 0 (16)2. j�� dj <� s:~S(x+ d) and ~S(x + �) are correlated; ~S(x) is uncorrelated with the two others, so:T~S(d; �) = E[ ~S(x)]:E[ ~S(x+ d) ~S(x+ �)] = ~mSC~S(� � d) = 0 (17)3. Otherwise:Both ~S(x), ~S(x+ d) and ~S(x+ �) are uncorrelated, so:T~S(d; �) = E[ ~S(x)]:E[ ~S(x+ d)]:E[ ~S(x+ �)] = ~m3S = 0 (18)The term T~S(�d; �) is obtained by changing d into �d in the above expressions. We see that in most cases the biasvanishes under the hypothesis d � s. It is important to remark that this previous calculus is valid only under thespace-stationarity hypothesis, i.e. if mS is the same on the whole image. This is valid only if we take the central partof the speckle pattern.Let us assume that d� s. We can then write the approximationK~I(�) = K~S(�) �KO(�) (19)and in the Fourier domain:K̂~I(u) = K̂~S (u):K̂O(u) (20)



�E. Aristidi et al.: Imaging binary stars by the cross-correlation technique 5Estimating K̂O(u) from speckle data is very similar to classical speckle interferometry processing. The cross-spectraare estimated as ensemble averages (F denoting the Fourier Transform):K̂~I = hF [ ~I2]F [ ~I]�iK̂~S = hF [ ~S2]F [ ~S]�i (21)Note that K̂S (u) is a real function (assuming the statistical properties of the ideal point-spread speckle pattern areisotropic in space).Numerical simulations of speckle data are presented in �gure 3. This technique has been applied successfully tothe newly discovered double star Moai 1 (Carbillet et al., 1996a). Figure 4 shows another application to the star� Sge. Observations were made on September, 1994 with the 2m Bernard Lyot Telescope (BLT) of the Pic du Midiobservatory, using the speckle camera of the Aperture Synthesis group of Observatoire Midi-Pyr�en�ees (Andr�e el al.,1994) and an ICCD detector.
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Fig. 3. Cross-correlation/spectrum computed on simulated speckle patterns. The calculus has been made on two sets of 200images, one for the double star and one for the reference star. The double star is 10 pixels separation oriented along the x-axis.The intensity ratio is 0.5. The simulation has been made for a Fried parameter r0 = 20 cm, a telescope diameter of 2.60 m anda wavelength � = 500 nm. Picture (a) is a typical double star's specklegram, (b) is the two-dimensional object's CC KO(�) and(c) is a cut along the �x axis. Notice the dissymetry of the two secondary peaks. Lower pictures are the real (d) and imaginary(f) parts of K̂O(u), while the curves (e) and (g) are the corresponding cuts along the ux axis. Note the sign of the slope at theorigin of Im[K̂O(u)].3. Low light level3.1. Expression of the photon bias in the cross-correlationIn this subsection we denote as the generic name K(�) one of the functions KO(�), KI(�) or KS(�). The same is fortheir Fourier transforms: K̂(u). These functions are the CC and the CS of a hight-light zero-mean speckle pattern.Since K(�) is a slice of the triple correlation of O(x), it is possible to take advantage of the calculus of the biasterms made by Aime et al. (1992) in the photodetected triple correlation. Equation 2.18 of this last paper leads to thefollowing expression for the photodetected cross-correlation Kp(�) of the zero-meanKp(�) = �N3K(�) +Bp(�) (22)
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0Fig. 4. This �gure shows an application to the bright star � Sge (see text for details). Computation was made for 1089 shortexposure (20 ms) frames of the double star and 2993 on the reference star HR 7536. The mean value of each specklegram hasbeen estimated as an average of the intensity over the image, then subtracted. Figures (a) and (b) are the two-dimensional CCand its cut along the �x axis (the coordinate system has been rotated so that interesting features are along the horizontal axis).The dissymetry of the secondary peaks gives the relative position of the stars. Figures (e) and (f) are the real and imaginaryparts of the CS K̂O(u), (c) and (d) are cuts along the ux axis. The imaginary part of K̂O(u) is a sine function with positiveslope at origin: the brightest star is on the left.Bp(�) is a photon bias term whose expression isBp(�) = 2 �N2C(0)�(�) + �N2C(�) + �N�(�) + �N (23)where �N is the average number of photons per image, C(�) is the correlation function of the zero-mean high-lightspeckle pattern (standing for CO(�), CI(�) and CS(�)) and m is its mean. The bias terms are not as simple as forthe photodetected AC (Aime et al., 1992) where it is just a Dirac delta function at the origin. The photodetected CSK̂p(u) is biased by frequency-dependent termsK̂p(u) = 2 �N2C(0) + �N2W (u) + �N + �N3K̂(u) (24)where W (u) is the power spectrum, Fourier transform of C(�). It is remarkable to notice that bias terms are real. Theimaginary part of the photodetected cross-spectrum is unbiased. Its expression isIm[K̂p(u)] = �N3Im[K̂(u)] (25)3.2. Case of a bright reference starFor a bright enough reference star, the detection at high light level of the specklegrams S(x) allows to compute thehigh-light zero-mean cross-spectrum K̂~S (u). We assume that the specklegrams I(x) are detected in photon-countingmode. We denote as K̂Op(u) the ratio between the photodetected cross-spectrum of I(x) and the cross-spectrum ofS(x)K̂Op(u) = K̂Ip(u)K̂~S(u) (26)



�E. Aristidi et al.: Imaging binary stars by the cross-correlation technique 7Even in the case of a well resolved double star where the convolution relation may be applied, K̂Op(u) is not a goodestimator of the double star cross-spectrum because of the complicated bias terms. Its real and imaginary parts areRe[K̂Op(u)] = �N3IRe[K̂O(u)] + 1K̂~S(u) (2 �N2ICI(0) + �N2IWI (u) + �NI )Im[K̂Op(u)] = �N3I Im[K̂O(u)] (27)where NI is the average number of photons per image in the specklegrams of I(x). Here again it appears that theimaginary part of K̂Op(u) is unbiased. This may be interesting if we remember that this imaginary part contains theinformation on the relative position of the stars in O(x).3.3. General caseIn this subsection we suppose that both I(x) and S(x) are photodetected. We denote as NS the average number ofphotons per image in the specklegrams of S(x). We shall see that the information on the relative position of the starsis still present. This information is contained in the slope of the imaginary part of K̂O(u) at the origin (see �gure 2).For a high-light detection where K̂O(u) is estimated as written in equation 20, the slope s, de�ned in eq. 7, can bewritten as (after a few algebra)s = � dduIm[K̂O]�u=0 = 1K̂S(0) � dduIm[K̂I]�u=0 (28)where we use the fact that Im[K̂I(0)] = 0. The sign of s is that of h dduIm[K̂I]iu=0.We denote as sp the slope at the origin of K̂Op(u) de�ned as the ratio between the photodetected cross-spectra ofI(x) and S(x). The expression of sp is similar to the previous equationsp = 1K̂Sp(0) � dduIm[K̂Ip]�u=0 (29)and from equation 25 sp expresses assp = �N3IK̂Sp(0) � dduIm[K̂I]�u=0 (30)Taking the expressions given in equation 24 for K̂Sp(0),sp = �N3I h dduIm[K̂I]iu=02 �NSCS(0) + �N2SWS(0) + �N3SK̂S(0) (31)in the case of NS � 1 this relation may be approximated bysp = �N3�N3S s (32)The signs of s and sp are the same because the denominator of eq. 32 is positive. The relative position of the starscan then be retrieved in spite of the photon bias. Results of a simulation are shown in �gure 5.3.4. Subtracting the photon biasThe frequency-dependent bias terms in the expression of K̂p(u) can easily be removed by substracting the photode-tected power spectrum Wp(u), whose expression is derived from Aime et al. (1992) and is valid in the case where thehigh-light mean is zeroWp(u) = �N2W (u) + �N (33)
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10 �E. Aristidi et al.: Imaging binary stars by the cross-correlation techniqueof those of the CC) but there are also two \ghosts" at spatial lags �2d caused by photon bias. Simulations havebeen performed on clipped photon-counting specklegrams. The results, presented in �gure 9 agree with the analyticalmodel.
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Fig. 8. Picture (a) is the triple correlation T (�1; �2) of clipped photon counting specklegrams of a double star. It is a plot inthe (�1; �2) plane in the case where �1, �2 and d are collinear. The double star has a separation of 10 pixels and an intensityratio � = 0:5. (b) is a schematic representation of (a) where the relevant peaks are drawn as �lled circles with values of the TCindicated. Curves (c), (d) and (e) are the CC, the function �1(�) and the function �2(�). These curves correspond to slices ofthe TC along the directions indicated by the vertical arrows. As expected the CC does not show any dissymetry. The function�1(�) looks similar to the unclipped CC with a slight dissymetry between the peaks (no photon bias correction has been appliedhere). The function �2(�) presents four peaks. The two external ones are due to photon bias. The two central ones containinformation about the relative position . Their dissymetry is in the opposite sense than those of the secondary peaks of the CC.4. DiscussionThe technique we propose here may be seen as a complement to Labeyrie's speckle interferometry for binary stars.The CC is as easy to interpret as the classical AC but provides the absolute PA of the stars as well. The CC is veryeasy to implement. It has the advantage to give a very simple result in the form of a direct 2D image so that it appearsworth it to try that method for a quick analysis of the PA when doing double star observations.The use of a reference star may not be necessary for position measurements. The secondary peaks and theirdissymetry are usually easy to see on the double star's CC. In the Fourier plane, the imaginary part of the CS alsoreveals the position of the brighter star by its slope at the origin. However, a reference star can enhance the dissymetryof the CC for di�cult objects (very small or very large magnitude di�erence).For relative photometry measurements (the intensity ratio of the couple) a reference star must be used. A carefulattention must then be given to the bias subtraction. As shown in section 2, the convolution relation between thedouble star's CC and the PSF's CC applies only for zero-mean specklegrams under space-stationarity hypothesis. Ifone of these conditions is not ful�lled, the deconvolution will give a biased result (the intensity ratio is estimated bythe ratio of the heights of the two peaks). Space-stationarity is generally a wrong assumption for real specklegrams:they present a �nite spatial extent depending upon seeing conditions. The statistical mean of the speckle patterns isthen a function of the position and cannot be estimated by averaging the intensity over the whole images, as it is



�E. Aristidi et al.: Imaging binary stars by the cross-correlation technique 11
0 20 40 60

0

50

100

150

200

250

0 20 40 60
0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000(a) (b) (d) (c) (1) 

(2) Fig. 9. Simulation of clipped photon-counting specklegrams. 1000 frames have been simulated for a double star of separation10 pixels and intensity ratio 0.5. 1000 frames of a point source have also been simulated. Parameters of the simulation are:telescope diameter: 2.60m, Fried parameter: 30 cm, wavelength: 500 nm and number of photons per frame: 200 (each frame is64 � 64 pixels). Picture (a) is the function �1(�) of the double star divided by those of the reference star. Curve (b) is a slicealong the �x axis. Figures (c) and (d) are the same for the function �2(�). The two peaks (1) and (2) give the information aboutthe relative position of the stars (brighter star on the right in this simulation). The other peaks of �2 are ghosts due to photonbias.done usually. Obtaining zero-mean specklegrams in these conditions is not simple. For small separations, it can beuseful to process small sub-images extracted around the photocenter of the specklegrams. If the dimension of thesesub-images is small enough compared to the size of the speckle patterns, the statistical mean can be considered asnearly constant. It can then be estimated as the spatial mean of the intensity over the sub-images and subtracted.The smaller the sub-images are, the better it will work. A simulation is shown in �gure 7. This is not suitable forlarge separations. Various algorithms may be tried in that case. For example subtracting to each specklegram thecorresponding long-exposure image averaged over some hundreds of instantaneous frames. Or �tting each specklegramby a smooth function like a Gaussian, then subtracting it. Actually this will increase in the processing the weight ofthe small values of the border of the image, and consequently the noise.At low light level, the frequency-dependent photon bias can be removed by subtracting the power spectrum to theCS. Here again, this operation is not really necessary for position measurements: the relevant information is containedin the slope at the origin of the unbiased imaginary part of the double star's CS. But it considerably enhances thedissymetry of the two secondary peaks of the CC (as shown by �gure 6).This technique has been successfully used over about 20 double stars observed at the Bernard Lyot telescopebetween 1994 and 1995. All the measured PA were compatible with the orbit of the star. These results will besubmitted soon to Astronomy and Astrophysics. During our last observing run, we discovered a 0:001-separated binarystar (Moai 1) with almost zero magnitude di�erence. Its CC was slightly dissymetric and we predicted a PA for thiscouple (Carbillet et al., 1996a).Acknowledgements. The authors whish to thank J.-L. Prieur (Observatoire Midi-Pyr�en�ees) for the use of his speckle cameraand his cooperation during the observationsReferencesAime C., Aristidi �E. 1991, J. Opt. Soc. Am. A, 8, 1434Aime C., Aristidi �E. 1992, J. Opt. Soc. Am. A, 9, 1812Andr�e C., Festou M.C., Koechlin L., Lannes A., P�erez J.P., Prieur J.L., Roques S. 1994, Planet. Space Sci., 42, 747Aristidi �E., Aime C. 1995, A&AS, 109, 571Bagnuolo W.G. Jr 1988, Optics Letters, 13, 907Bagnuolo W.G. Jr, Mason B.D., Barry D.J., Hartkopf W.J., McAllister H.A. 1992, AJ, 103, 1399Bates R.H.T. 1982, Physics Reports (review section of Physics Letters), 90, 203Carbillet M., Lopez B., Aristidi �E., Bresson Y., Aime C., Ricort G., Prieur J.L., Koechlin L., Helmer J., Cruzal�ebes P. 1996a,,A&A, 314, 112Carbillet M., Aristidi �E., Aime C., Ricort G. 1996b, submitted to A&AFoy R. 1987, in Proceedings of the 9th Santa Cruz Workshop in astronomy and astrophysics, L.-B. Robinso Ed (Springer,New-York), 345Knox K.T., Thompson B.J. 1974, ApJ, 193, L45Labeyrie A. 1970, A&A, 6, 85Lohman A.W., Weigelt G., Wirnitzer B. 1983, Appl. Opt., 22, 4028
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