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Abstract. We present in this paper a technique for imaging binary stars from speckle data. This technique is based
upon the computation of the cross-correlation between the speckle frames and their square. This may be considered
as a simple, easy to implement, complementary computation to the autocorrelation function of Labeyrie’s technique
for a rapid determination of the position angle of binary systems. Angular separation, absolute position angle and
relative photometry of binary stars can be derived from this technique. We show an application to the bright double
star ¢ Sge observed at the 2m Bernard Lyot telescope.
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1. Introduction

Processing binary stars by speckle interferometry (Labeyrie, 1970) leads to a 180° ambiguity in the measured position
angle (PA). This is known as “quadrant ambiguity”. Several techniques of speckle imaging can solve the problem,
among which the techniques of Knox-Thompson (Knox and Thompson, 1974), shift-and-add (Bates, 1982) and speckle
masking (Weigelt, 1991). A review of these techniques has been made by Roddier (Roddier, 1988). As they aim to
reconstruct the image of any extended object from its specklegrams, these techniques usually require a lot of computer
resources and processing time. They are not really well adapted to the double star problem: observers want to measure
the separation and the PA of many stars a night and need a fast (near real-time) processing. Several techniques
have been suggested for this purpose; for example the Directed Vector Autocorrelation (Bagnuolo et al., 1992) which
provides both the separation and absolute PA, the “fork” algorithm (Bagnuolo, 1988) based on the analysis of four
equidistant points in the double star’s specklegrams or the probability imaging technique (Carbillet, 1996b) based on
the computation of twofold probability density functions of the specklegrams. These later techniques require a prior
knowledge of the star separation which is usually measured from the power spectrum.

We propose a technique based upon the computation of a quantity very close to the autocorrelation function (AC):
the cross-correlation (CC) between the specklegrams and their square. This function can be written as a slice of the
triple correlation obtained for a speckle masking vector equal to zero. It is a two-dimensional function. For a double
star, this quantity at first glance looks like the AC: a central peak surrounded by two smaller ones. These secondary
peaks, identical in the AC, are dissymetric for the CC, allowing a quick diagnostic of the relative position of the two
stars. The CC is almost as easy to compute as the AC, does not require the prior estimation of the power spectrum,
and is then suitable for real-time processing. It also permits, under some hypothesis which will be developed in the
text, the determination of the magnitude difference between the stars.

This paper is organized as follows. Section 2.1 defines the statistical function we use, and derives relevant expressions
for the double star. Section 2.2 describes the technique proposed to process real star data. We shall see in particular
that the object-image convolution relation valid for the AC does not apply here and we propose a solution to overcome
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for clipped photon counting specklegrams (Where the number of detected photons is “0” or “17).

2. General expressions
2.1. Cross-correlation/spectrum between a double star’s image and its square

In this paper one-dimensional notation will be used for simplicity, the extension to two dimensions being trivial. The
intensity of a double star O(z) can be modeled as the sum of two unit impulses distant d and weighted by the intensity
ratio a;, 1.e.:

O(x):é(x—g)—l—aé(x—l—g) (1)

Cross-correlation

We denote as Ko(p) the cross-correlation (CC) between O(x) and its square. Ko (p) is defined as

Kolp / 0%( (z + p)de (2)

This function is a slice of the triple correlation of O(x) defined as (Weigelt, 1991)

olprp2) / O() O(x + p1) Ol + ps) da (3)
we have Ko(p) = To(0, p).
For a double star, Ko (p) becomes

Ko(p) = (1+a%)é(p) + o’d(p—d) + ad(p+d) (4)
This quantity may be compared with the AC C(p) of the double star O(x)
Clp) = (L+a*)d(p) + ad(p—d) + ad(p+d) (5)

Both C(p) and Ko (p) are composed of a central peak surrounded by two smaller ones distant d (see figure 1). For the
AC, these two peaks are symmetrical whatever the value of «. This is why Labeyrie’s speckle interferometry cannot
give the relative positions of the two stars when observing a binary system. The CC K¢ (p) presents two dissymmetrical
peaks of ratio a. The relative position of the peaks is those of the stars in O(z). Using this quantity in double star’s
speckle interferometry, rather than AC, should give the position angle (PA) of the binary without any ambiguity.
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Fig. 1. Schematic representation of a double star O(z) (left), its AC C(p) (middle) and the CC Ko(p) between O(z) and its
square (right). The arrows represent Dirac delta distributions. Note the dissymetry of the CC, where the ratio between the
intensities of the two peaks in (—d) and (4d) is exactly the intensity ratio of the stars.
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In the Fourier domain, the cross spectrum (CS) f(o(u) between O(x) and its square is the Fourier transform of Ko(p).
It is a complex quantity whose real and imaginary parts are:

Re[f(o(u)] = 1+a*+ a(l + a) cos(2mud)

) (6)
Im[Ko(u)] = a(a—1) sin(2rud)

Both are sinusoidal functions of period %. The amplitude of the real and of the imaginary part gives the value
of a without any ambiguity. But information concerning the relative position of the stars is fully contained in the
imaginary part of Ko(u). Let s be the slope of Zm[Ko(u)] at the origin:

s = [dizm[f(o]]uzo = 2rnda(a —1) (7)

U

We note that s < 0 when o > 1 and s > 0 when a < 1. See figure 2 for illustration.
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Fig. 2. Real and imaginary parts of the CS between a double star O(z) and its square. Both figures are for an intensity ratio
a = 0.5 between the two stars. Up: brighter star on the left, down: brighter star on the right. The real part of the CS is not
sensitive to this orientation contrary to the imaginary part: its slope at the origin is positive in the first case and negative in
the second one.

2.2. Estimation of f(o(u) from speckle data

We denote as I(z) the instantaneous double star’s specklegrams and S(z) the corresponding point-spread function
(PSF). Assuming isoplanatism, we can write

I(x) = S(x — g) +aS(z + g) (8)
We denote as Ky(p) the CC of I(x) and Ko (p) the CC of S(z).
Kilp) = ([ P@) 1G4 ) o) )

oQ



Unf\(l)rtunately we can’t find between K}(p) and I/(S(p) the sfn\lp/le convolution relation that exists between the
corresponding full triple correlations. Inserting the value of I(z) of eq. 8 into eq. 9, a simple calculation gives:
Kr(p) = (14 a®)Ks(p) + aKs(p+d) + a*Ks(p — d) + 2aTs(d, p) + 20 Ts(—d, p) (10)
This can be written as a convolution product plus a bias term
Ki(p) = Ks(p) * Ko(p) + B(p) (11)
where the bias term is

B(p) = 2aT5(d. p) + 20°T5(d, p) (12)

It 1s difficult to estimate and subtract this bias from speckle data because of the presence of the unknown factors
2 and 2a%. Nevertheless we shall see that B(p) vanishes if we consider zero-mean specklegrams in the case of a star
separation large with respect to the speckle size s.

We call S(x) and I(z) the zero-mean specklegrams of the PSF and the double star:

S(z) = S(z) - S
: (13)

We respectively denote as g, Cz(p), Kz(p) and Tz(p1, p2) the mean (with obviously /g = 0), the AC, the CC and
the triple correlation of S(z). We denote as K;(p) the CC of I(z). From egs. 12-14 we have

Ki(p) = Kz(p) * Ko(p) + 2aT5(d, p) + 20°Ts(—d, p) (14)

Let us consider the term Tz(d, p). We have
<(d, p) /s S(e+ d)S(x + p)da) = ES(0)S(x + d)S(x + p)] (1)

where Efe] is the mathematical expectation of . We have assumed that d > s, so g(x) and g(x +d) are uncorrelated.
We can distinguish 3 cases:

g pg(i)s.and S(x + p) are correlated; S(z + d) is uncorrelated both with S(x) and S(x + p), so
Ts(d, ) = BIS(x + A B(3()3(e + )] = isC3(p) = 0 (16)
2. [p—d| < s }
S(x+d) and S(z + p) are correlated; S(z ) is uncorrelated with the two others, so:
T5(d, p) = E[S(2)].E[S(x + d)S(x + p)] = 15 C5(p —d) = 0 (17)

3. Otherwise:

Both S(J:), g(x +d) and g(x + p) are uncorrelated, so:

T5(d,p) = EIS(@)).E[3(x + d))E[S( + p)] = i = 0 (18)
The term Tz(—d, p) is obtained by changing d into —d in the above expressions. We see that in most cases the bias
vanishes under the hypothesis d > s. It is important to remark that this previous calculus is valid only under the
space-stationarity hypothesis, i.e. if mg is the same on the whole image. This is valid only if we take the central part

of the speckle pattern.
Let us assume that d >> s. We can then write the approximation

Ki(p) = K5(p) * Ko(p) (19)

and in the Fourier domain:

Ki(u) = Kg(u).Ko(u) (20)
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are estimated as ensemble averages (F denoting the Fourier Transform):

Ky = (FIPIFI) o
Ks = (FISFIST)

Note that f(g(u) is a real function (assuming the statistical properties of the ideal point-spread speckle pattern are
isotropic in space).

Numerical simulations of speckle data are presented in figure 3. This technique has been applied successfully to
the newly discovered double star Moar 1 (Carbillet et al., 1996a). Figure 4 shows another application to the star
¢ Sge. Observations were made on September, 1994 with the 2m Bernard Lyot Telescope (BLT) of the Pic du Midi
observatory, using the speckle camera of the Aperture Synthesis group of Observatoire Midi-Pyrénées (André el al.,

1994) and an ICCD detector.
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Fig. 3. Cross-correlation/spectrum computed on simulated speckle patterns. The calculus has been made on two sets of 200
images, one for the double star and one for the reference star. The double star is 10 pixels separation oriented along the z-axis.
The intensity ratio is 0.5. The simulation has been made for a Fried parameter ro = 20 cm, a telescope diameter of 2.60 m and
a wavelength A = 500 nm. Picture (a) is a typical double star’s specklegram, (b) is the two-dimensional object’s CC Ko(p) and
(c) is a cut along the p, axis. Notice the dissymetry of the two secondary peaks. Lower pictures are the real (d) and imaginary
(f) parts of K o(u), while the curves (e) and (g) are the corresponding cuts along the u, axis. Note the sign of the slope at the
origin of Zm[K o(u)].

3. Low light level
3.1. Expression of the photon bias in the cross-correlation

In this subsection we denote as the generic name K(p) one of the functions Ko(p), Kr(p) or Ks(p). The same is for
their Fourier transforms: I;’(u) These functions are the CC and the CS of a hight-light zero-mean speckle pattern.

Since K (p) is a slice of the triple correlation of O(#), it is possible to take advantage of the calculus of the bias
terms made by Aime et al. (1992) in the photodetected triple correlation. Equation 2.18 of this last paper leads to the
following expression for the photodetected cross-correlation K,(p) of the zero-mean

Ku(p) = N*K(p) + By(p) (22)
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Fig. 4. This figure shows an application to the bright star ( Sge (see text for details). Computation was made for 1089 short
exposure (20 ms) frames of the double star and 2993 on the reference star HR 7536. The mean value of each specklegram has
been estimated as an average of the intensity over the image, then subtracted. Figures (a) and (b) are the two-dimensional CC
and its cut along the p, axis (the coordinate system has been rotated so that interesting features are along the horizontal axis).
The dissymetry of the secondary peaks gives the relative position of the stars. Figures (e) and (f) are the real and imaginary
parts of the CS [g’o(u)7 (c) and (d) are cuts along the u, axis. The imaginary part of [g’o(u) is a sine function with positive
slope at origin: the brightest star is on the left.

B,(p) is a photon bias term whose expression is
By(p) = 2N*C(0)3(p) + N?C(p) + Né(p) + N (23)

where N is the average number of photons per image, C'(p) is the correlation function of the zero-mean high-light
speckle pattern (standing for Co(p), Cr(p) and Cs(p)) and m is its mean. The bias terms are not as simple as for
the photodetected AC (Aime et al., 1992) where it is just a Dirac delta function at the origin. The photodetected CS
Ig’p(u) is biased by frequency-dependent terms

Kp(u) = 2N2C(0) + N?W(u) + N + N3K (u) (24)

where W (u) is the power spectrum, Fourier transform of C'(p). It is remarkable to notice that bias terms are real. The
imaginary part of the photodetected cross-spectrum is unbiased. Its expression is

Im[K,(u)] = N*Tm[K(u)] (25)

3.2. Case of a bright reference star

For a bright enough reference star, the detection at high light level of the specklegrams S(z) allows to compute the
high-light zero-mean cross-spectrum Kz (u). We assume that the specklegrams I(x) are detected in photon-counting

mode. We denote as Kop(u) the ratio between the photodetected cross-spectrum of I(x) and the cross-spectrum of

S(#)

Kop(u) = i’f’i((;‘)) (26)
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estimator of the double star cross-spectrum because of the complicated bias terms. Its real and imaginary parts are

Re[Kop(u)] = NPRe[Ko(u)] + %(QN}C,(O) + NFWi(u) + Nr)
AS(U) (27)

Im[Kop(u)] = N{Tm[Ko(u)]

where Ny is the average number of photons per image in the specklegrams of I(x). Here again it appears that the
imaginary part of Ko, (u) is unbiased. This may be interesting if we remember that this imaginary part contains the
information on the relative position of the stars in O(z).

3.3. General case

In this subsection we suppose that both I(z) and S(z) are photodetected. We denote as Ng the average number of
photons per image in the specklegrams of S(z). We shall see that the information on the relative position of the stars
is still present. This information is contained in the slope of the imaginary part of f(o(u) at the origin (see figure 2).
For a high-light detection where f(o(u) is estimated as written in equation 20, the slope s, defined in eq. 7, can be
written as (after a few algebra)

° T [%Im[m]u:o - 1%51(0) [%Im[f(’]]uzo (%)

where we use the fact that Zm[K;(0)] = 0. The sign of s is that of {%Im[f(;]}
u=0
We denote as s, the slope at the origin of Kop(u) defined as the ratio between the photodetected cross-spectra of
I(z) and S(z). The expression of s, is similar to the previous equation

= 1{’;(0) [%Im[f(”’]]uzo (29)

and from equation 25 s, expresses as
_ N
Ksp(0)

[%zm[f(,]] (30)

u=0
Taking the expressions given in equation 24 for IA&’SP(O),
N7 [ mi]

_ u=0
Sp - N N T3 (31)
2N505(0) + NSWS(O) + NSAS(O)

in the case of Ng >> 1 this relation may be approximated by

NS

N—ES (32)

Sp:

The signs of s and s, are the same because the denominator of eq. 32 is positive. The relative position of the stars
can then be retrieved in spite of the photon bias. Results of a simulation are shown in figure 5.
3.4. Subtracting the photon bias

The frequency-dependent bias terms in the expression of Ig’p(u) can easily be removed by substracting the photode-
tected power spectrum W, (u), whose expression is derived from Aime et al. (1992) and is valid in the case where the
high-light mean is zero

W, (u) = N2W () + N (33)
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Fig. 5. Simulation of photodetected CS for different number of photons per image. The upper figures are for 2000 photons/frame,
the middle are for 40 photons/frame and the lower ones are for 15 photons/frame. The computation was made on two sets of
5000 images with the same parameters than figure 3. The pictures on the left are typical specklegrams. Curves are real (middle)
and imaginary (right) parts of the biased object’s cross spectrum [g’op(u) estimated as indicated in the text. Notice that even
at the lowest light level (15 photons/frame) it is possible to predict the relative position of the stars using the sign of the slope
at the origin s, of the imaginary part.

From equation 24 it appears that
Kp(u) = N3K (u) + W, (u) + 2N2C(0) (34)

This bias is quite easy to remove when processing real data. IA(p(u) and W, (u) are computed directly from the data,
then subtracted. The remaining bias is the constant 2N2C/(0) and can be estimated beyond the cutoff frequency.

The efficiency of this bias subtraction is shown in figure 6. It is a simulation of 10000 photon-counting specklegrams
(50 photons/image) of a double star with a separation of 10 pixels and an intensity ratio of 0.5. As expected, the major
improvement of the bias subtraction is to restore the dissymetry of the cross-correlation’s secondary two peaks, thus
allowing a better diagnostic of the relative position of the two stars.

3.5. Clipping conditions

Some photon-counting detectors have centroiding electronics which compute in real time the photon coordinates and
cannot distinguish between one photon and more photons which have come onto a given pixel during the integration
time. Intensities on the specklegrams are then thresholded to “1” and this is what we call “clipping”. Such images are
then equal to their square and the CC is equal to the AC. The dissymetry is lost.

We propose computing alternative quantities to solve this problem. The first one is:

21) = ([ 1@+ OIle + p) o) (35)
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Fig. 6. Simulation of 10000 photodetected images of a double star of separation d = 10 pixels and intensity ratio & = 0.5. The
average number of photons per image is 50. The parameters of the simulation are 2.60 m for the telescope diameter, ro = 30 cm
and wavelength A = 5000 A. 10000 images of a single reference star have also been synthesized with the same conditions. Curves
on the left are the real part of the photon-biased and unbiased CS [g’Ip(u) of the double star’s images. Curves on the right are
the biased and unbiased object’s CC Ko(p). The ratio of the two peaks is 0.90 for the biased data and 0.73 for the unbiased
ones.
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Fig. 7. Simulation of 100 specklegrams of a double star with the same parameters than figure 3. The image size is 128x128.
Left: a typical specklegram. the white square on the left figure demarcates a sub-image of 32x32 centered on the photocenter of
the speckle pattern. The full-width-middle height of the speckle pattern shape is ~ 34 pixels. Right: a cut of the object’s CC
Ko(p) after deconvolution by a reference star’s CC computed from 100 specklegrams. Dashed line: computation on the whole
images, full line: computation on the sub-images. In both cases, the mean of the specklegrams has been estimated as the average
of the intensity on the image, then subtracted. The CC computed on the whole images gives an intensity ratio o = 0.76. For
the sub-images, the statistical mean is almost constant: the CC is almost unbiased and the ratio of the two secondary peaks
gives a = 0.46 (actual value is 0.5).

If € is small compared to the speckle size, but larger than the “centreur hole” size (Foy, 1987), I(x) and I(z + €) are
correlated enough to provide Zy(p) with the same properties than the CC.
The following function may also be computed but it requires the knowledge of the star separation d:

Ea(p) = </ I(z)I(z + d)I(z + p) dz) (36)

These two functions correspond to slices of the triple correlation: Z1(p) = T'(¢, p) and Z2(p) = T(d, p). In order
to understand the behaviour of these quantities, we have computed the triple correlation T'(p1, p2) of clipped photon-
counting specklegrams of a double star, for fully-developed speckle patterns. In that case the complex amplitude at the
focal plane is a gaussian random variable and analytical expressions can be obtained for the clipped TC (Aristidi et
al., 1995). Figure 8 shows the TC and the functions 1 (p) and Ea(p) for the Gaussian hypothesis. The function Z;(p)
has the same behaviour than the unclipped CC: two dissymmetrical peaks giving the couple orientation. The function
Ea(p) is a bit more complicated. Tt should present two dissymetrical peaks separated d (dissymetry is the opposite
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been performed on chpped photon-counting specklegrams The results presented in figure 9 agree with the analytical
model.
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Fig. 8. Picture (a) is the triple correlation T'(p1, p2) of clipped photon counting specklegrams of a double star. It is a plot in
the (p1, p2) plane in the case where pi1, p2 and d are collinear. The double star has a separation of 10 pixels and an intensity
ratio & = 0.5. (b) is a schematic representation of (a) where the relevant peaks are drawn as filled circles with values of the TC
indicated. Curves (c), (d) and (e) are the CC, the function =1(p) and the function =2(p). These curves correspond to slices of
the TC along the directions indicated by the vertical arrows. As expected the CC does not show any dissymetry. The function
E1(p) looks similar to the unclipped CC with a slight dissymetry between the peaks (no photon bias correction has been applied
here). The function =2(p) presents four peaks. The two external ones are due to photon bias. The two central ones contain
information about the relative position . Their dissymetry is in the opposite sense than those of the secondary peaks of the CC.

4. Discussion

The technique we propose here may be seen as a complement to Labeyrie’s speckle interferometry for binary stars.
The CC is as easy to interpret as the classical AC but provides the absolute PA of the stars as well. The CC is very
easy to implement. It has the advantage to give a very simple result in the form of a direct 2D image so that it appears
worth it to try that method for a quick analysis of the PA when doing double star observations.

The use of a reference star may not be necessary for position measurements. The secondary peaks and their
dissymetry are usually easy to see on the double star’s CC. In the Fourier plane, the imaginary part of the CS also
reveals the position of the brighter star by its slope at the origin. However, a reference star can enhance the dissymetry
of the CC for difficult objects (very small or very large magnitude difference).

For relative photometry measurements (the intensity ratio of the couple) a reference star must be used. A careful
attention must then be given to the bias subtraction. As shown in section 2, the convolution relation between the
double star’s CC and the PSF’s CC applies only for zero-mean specklegrams under space-stationarity hypothesis. If
one of these conditions is not fulfilled, the deconvolution will give a biased result (the intensity ratio is estimated by
the ratio of the heights of the two peaks). Space-stationarity is generally a wrong assumption for real specklegrams:
they present a finite spatial extent depending upon seeing conditions. The statistical mean of the speckle patterns is
then a function of the position and cannot be estimated by averaging the intensity over the whole images; as it is
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Fig. 9. Simulation of clipped photon-counting specklegrams. 1000 frames have been simulated for a double star of separation
10 pixels and intensity ratio 0.5. 1000 frames of a point source have also been simulated. Parameters of the simulation are:
telescope diameter: 2.60 m, Fried parameter: 30 cm, wavelength: 500 nm and number of photons per frame: 200 (each frame is
64 x 64 pixels). Picture (a) is the function Z;(p) of the double star divided by those of the reference star. Curve (b) is a slice
along the p, axis. Figures (c) and (d) are the same for the function Z2(p). The two peaks (1) and (2) give the information about
the relative position of the stars (brighter star on the right in this simulation). The other peaks of =3 are ghosts due to photon
bias.

done usually. Obtaining zero-mean specklegrams in these conditions is not simple. For small separations, it can be
useful to process small sub-images extracted around the photocenter of the specklegrams. If the dimension of these
sub-images is small enough compared to the size of the speckle patterns, the statistical mean can be considered as
nearly constant. It can then be estimated as the spatial mean of the intensity over the sub-images and subtracted.
The smaller the sub-images are, the better it will work. A simulation is shown in figure 7. This is not suitable for
large separations. Various algorithms may be tried in that case. For example subtracting to each specklegram the
corresponding long-exposure image averaged over some hundreds of instantaneous frames. Or fitting each specklegram
by a smooth function like a Gaussian, then subtracting it. Actually this will increase in the processing the weight of
the small values of the border of the image, and consequently the noise.

At low light level, the frequency-dependent photon bias can be removed by subtracting the power spectrum to the
CS. Here again, this operation is not really necessary for position measurements: the relevant information is contained
in the slope at the origin of the unbiased imaginary part of the double star’s CS. But it considerably enhances the
dissymetry of the two secondary peaks of the CC (as shown by figure 6).

This technique has been successfully used over about 20 double stars observed at the Bernard Lyot telescope
between 1994 and 1995. All the measured PA were compatible with the orbit of the star. These results will be
submitted soon to Astronomy and Astrophysics. During our last observing run, we discovered a (”/1-separated binary
star (MoAal 1) with almost zero magnitude difference. Tts CC was slightly dissymetric and we predicted a PA for this
couple (Carbillet et al., 1996a).
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