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ABSTRACT

We report in this communication experimental results obtained by the technique of Probability Imaging
applied to double stars in the near-infrared. Intensity ratios and relative positions of components are obtained
for six double stars. The two-fold probability density function of one-dimensional images is used to reconstruct
the binary system. The data reduction is made with a parametric approach, by minimizing a distance between
observed two-fold probability density functions and modelled ones, obtained by using a close-by reference star.

1 INTRODUCTION

This communication presents a practical implementation of the technique of Probability Imaging (PI) to the
image reconstruction of binary systems from one-dimensional near-infrared specklegrams. It follows the work of
Aime et al.* who first used PI to the image reconstruction of ¢ Agr. The present approach uses a data reduction
procedure that makes it possible to obtain quantitative results suitable for astrophysical interpretations.

The infrared data processed here were obtained by Ch. Perrier in K band (A = 2.2 p,AX = 0.39 ) on
December 1987 and March 1991 with the ESO slit-scanning infrared specklegraph attached to the 3.60 m telescope,
the diffraction limit being in this conditions 0"140.

PI technique belongs to the speckle imaging techniques invented by Labeyrie'’ and that use a statistical
analysis to recover images at high angular resolution in spite of atmospheric turbulence. It may be compared to
the techniques of Knox and Thompson? and to speckle masking!® .

PI is based on the study of the probability density function (PDF) at several points in space of the speckle
pattern that is formed at the focus of the telescope. As shown by Aime!® , all the parameters of a binary systein,
i.e. the star separation, relative amplitude and position of the components can be derived from the analysis of
the two-fold PDF of the speckle pattern. The present study develops an improved data reduction approach using
minimization techniques to obtain these parameters with a high accuracy.

The communication is organized as follows. A brief summary of the principle of PI and its application to the
imaging of a binary system is given in section 2. The procedure to quantitatively determine the parameters of
the binary systems, by means of comparison between two-fold PDF's of observed and synthesized one-dimensional
images of double star speckle patterns, is described in section 3. The infrared results obtained on the double stars
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Figure 1: Example of scans and two-fold PDFs : P(Iy, Ir; p = 10 pixels [07938]), for the point source-like reference
single star o Agr and for the double star { Agr. A scan of a Agr is represented in dashed line,while one of { Agr
is in full line. The calculation of the two-fold PDFs was made from a set of 757 scans for ( Agr and 732 scans
for @ Agr, obtained on December 10th 1987, in a West to East scanning direction. The variation in intensity of
the signal is restricted to 64 integer values. The discretization sample in intensity used here is the same for the
two sets of data.

¢ Aqr, v Vir, ¢ Ori, GL 473, Gl 866 and G 804 are also given in section 3. A discussion including the further
possible improvements of the procedure is made in section 4.

2 PRINCIPLE OF PROBABILITY IMAGING OF A DOUBLE
STAR

A binary system, for which none of the stars is individually resolved by the telescope, is the simplest object
that can be considered for image reconstruction. Its perfect image is made of two points of intensities by and
b2, separated by a vector of position d. In a one-dimensional analysis, we can only obtain the projection d of d
onto a direction of the sky ; the recovery of d remains possible by performing analysis in two different scanning
directions, as we shall see for the star GI 473. Unless a very accurate photometry is performed, we cannot access
the absolute values by and b, but only their ratio av = by /b;.

The object of our analysis will be therefore to obtain these two quantities d and «. It is important to note
that «, whether its value is lower or greater then 1, will give the relative positions of the stars, a quantity that
cannot be obtained using Labeyrie’s speckle interferometry technique. We shall now briefly summarize how the
PI technique may give the values of d and a.

For the intensity I(x) of a one-dimensional speckle image, the quantity P(Iy, I»; p) dI; dI; measures the prob-
ability that I(x) has an intensity value lying in the elementary interval {I;, I; + dI; } while I(x + p), of the same
scan, has an intensity value lying in the interval {I», I, + dI»}. The quantity P([;, I,;p), function of the three
variables I;, I and p, is the two-fold PDF of I(z).

As discussed by Aime et al.* , there is a strong difference between two-fold PDFs of speckle patterns produced
by a point source and a double star. For a given value of p, the observed PDFs appears as joint occurence

histograms of the discretized values I1 and I», and can be represented as gray-level images (cf. Figure 1).

For the point source speckle patterns, these figures are symmetrical in I; and I, whatever the value of p ; for



the double star, the PDF shows a dissymetric structure for the values of p close to the star separation d. The
principle of PT is based on the fact that there is an unique relationship between the shape of the two-fold PDF
and the ratio of components a.

The drawback of the PI technique is that this relationship cannot be simply expressed as the product of a
function that depends on d and « alone and a function that is relevant to the point source speckle pattern. This
makes calibration of the results difficult. Different approaches have already been investigated to overcome this
difficulty (Aime and Aristidi® , Aime?). For the present analysis, we have choosen to use an improved version
of the calibration procedure of experimental and numerical nature which was proposed by Aime et al. ; its
implementation is described in the next section.

3 CALIBRATION PROCEDURE

For the ESO slit-scanning specklegraph, the data are made of one-dimensional scans I(z), representing the
projection of the two-dimensional speckle image onto the scauning direction (Perrier!?). Each observation resulted
in two sets of scans : one on the double star and the other one on its reference star. Each scan is made up of
128 data points, the first 64 corresponding to the scanning of the star speckle pattern itself, the remaining part
of the scan being done on the sky for noise background analysis.

3.1 Practical implementation of the comparison between observed and synthesized
PDF's

The procedure we use to synthesize the two-fold PDF of a possible observed double star is an improvement
of the one proposed by Aime et al.? . It basically consists of constructing, from the set of reference point source
speckle patterns {S;(z)}i=1 n, a set of speckle images {D;]‘(’(;L')},-:LN, that may be representative of the speckle
patterns which would be observed for a binary star of angular separation d and intensity ratio a. We expect
that, for the values of d and « we seek to obtain, the two-fold PDF of the synthesized set of data will be similar
to that of the set of data {D;(x)};=1 , observed for the double star (the number of scans K and N are not
necessarily equal). In practice, this similarity will be quantitatively estimated by computing a distance function
D(d, ) between the observed and synthesized PDFs. This function is expected to have an absolute minimum for
the good values of d and a.

To construct the set of speckle images {Df’a(m)}, we assume isoplanetism, and write the double star speckle
pattern as the sum of two shifted and weighted identical point source speckle patterns, of the form :

o 1 X
DI (4) = 12— Sile) + o Sile =) 1

The term (1 + «) is a normalizing factor that makes the average value of D,dQ(T) independent of d and o, and
equal to that of S;(2). As indicated above, that ensures the synthesized scans D;]’“

with the observed ones D;(x).

(z) to be directly comparable

The determination of the shifted term S;(z —d) can be easily done when d is equal to a multiple of the sampling
interval ; otherwise an interpolation of the scans must be made. We have tested three interpolating techniques :
a simple linear interpolation, an interpolation making use of a decomposition of the signal on a basis of Forsythe
polynomials and an interpolation making use of the properties of the Fourier transform. The best results were
found when using this latter technique. The shifted speckle pattern S;(x — d) is obtained as follows (Carbillet®).



We compute the Fourier transform 5’,(11) of §;(x), and multiply it by a phase term of the form exp —:27ud ; then
we take the inverse Fourier transform to recover S;(x — d).

In order to better fit the statistical properties of the synthesized double star patterns to the observed ones,
we must take into account the level of noise present in the data. The noise here is mainly of additive origin. We
may write :

D(z) = D(x) + np(x) (2)

where D(L) is the noiseless speckle pattern. It can be easily shown (Ricort et al.l®) that the effect of this
noise is to blur the observed PDFs. We can write :

P]’)(I] ]),[)) (I] ]),[))*P,,D(I1 ]),[)) (3)

where the symbol * stands for convolution, and applies on the variables I} and I,. As a result, the two-fold
PDF of the speckle pattern is blurred by the two-fold PDF of the noise. Since the noise levels for the double
star and the reference point source have in general different rates of blurring, this may be a source of error if a
numerical comparison is done.

A possible way to get rid of this blurring effect may be to deconvolve the PDFs from the noise PDF. This
was attempted by Ricort et al.!8 using the algorithm of Richardson and Lucy. Although there is indeed an
improvement in the resolution of the PDF's, the unregularized nature of the algorithimn amplifies the granularity
present in the PDFs and due to statistical fluctuations makes the numerical comparison difficult. We decided to
make use of an alternative technique which consists of comparing the two-fold PDFs with the resolution of the
lower one. From a practical point of view, this consists of applying a blurring function to the PDF, obtained with
the sharpest resolution. In fact, all the PDFs were also smoothed with a small Gaussian function to get rid of
the effect of statistical fluctuations.

Several kind of distances between observed and synthesized PDFs have been used :

(i) the Euclidean distance :

D (] (\ ZZ P(I],IZ7 _Pr],u'(lhl‘z;p)]z (4)

L Iy

(ii) the Kolmogorov distance (Kailath®), that can be written as :

D (d, o) —ZZ|P (I, Iy: p) — Pao(I1, I2; p)| (5)

LI

(iii) the distance proposed by Jeffreys” and Matusita'® | of the form :

Dym(d,a) = [> > W P(L, Lip) —\/Pao(li, I p))? (6)

I Iy
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Figure 2: P(Iy,Iy;p = 07938), 1 LP(Ii,I»;p = 07938) and (I# + I3)P (I, L;p = 07938) for the double star
¢ Aqr.

(iv) The y? distance proposed by Bédard® :

(d, ) ZZ [Pa,a(I1,I5; p) — P(I1, Iy; p)] (7)

L 1 11,12,[))

(v) We have also used the Kullback-Leibler distance (Kullback and Leibler!? ; Titterington'®), which comes
from considerations of entropy :

Pdﬂ(l Ip; P
Drr(d,a) =YY Paa(li.Lip) In | £ ’11272 ))] (8)
I, Iy

As a result, all these distances as they are written in relation 4 to 8 correspond to different quantities and are
hardly comparable one to another. Nevertheless, in order to be able to represent them on a same graph, we have
made use of a normalizing factor by dividing each of the distances by D.(d,«) - with * = E, K, JM,x* or KL -
by the distance of D.(d, 0) from the observed double star to the reference point source.

In addition to these distances and in order to reduce the influence of the low intensity region (corresponding
essentially to the noise present in the data), we made use of two different weighting function that enhance the
values of P(Iy, I»;p) for I} and I, large : I} I, and (I + I3) (cf. Figure 2).

3.2 Results

We give in this subsection the results of the determination of d and « for the stars ¢ Agr, v Vir, ¢ Ori, G1 473,
Gl 866 and GI 804. In a first part, we apply the whole treatment described in the previous subsection (with all
the distances and weighting functions) to the determination of d and « for the star ¢ Agr. This will enable us to
show the various distances and weighting functions and discuss about their behaviour towards our problem. In a
second part, we give the results for the other double stars, with a restricted number of curves.
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Figure 3: Square visibility function V]u] and Euclidean distance Dg(d,a) between the PDFs of the double star
¢ Agr computed for p = 07938, d = 07655 to 17360 and a = 0 to 2.25. The square visibility function V[u],
obtained by dividing the power spectrum calculated for the double star by the one calculated for the reference
point source, shows a periodicity that is characterized by the parameters d and « found to be around 07985 for
d and around 1.35 or 0.74 for « (since the square visibility function makes no difference between o and %) The
Euclidean distance Dg(d, a) shows that the good values are around 07985 for d and around 1.35 for o, without
ambiguity.

Distance Euclidean Kolmogorov | Jeffreys-Matusita % Kullback-Leibler

raw PDF (079945,1.28) | (079895, 1.36) (079895, 1.36) (079895, 1.36) (079805,1.36)

LI, PDF (079805,1.30) | (079895, 1.36) (079895, 1.36) (079895, 1.36) (170040, 1.34)
(I? + IZ) PDF || (079805,1.30) | (0779895, 1.36) (079755, 1.36) (079895, 1.36) (170040, 1.34)

Table 1: Results obtained for the 15 distances computed for the binary star { Agr. The first number gives the
value of the star separation d in units of arcsecond, the second one gives the value of the intensity ratio a.

3.2.1 Detailed analysis for the star { Agr

The approach which is described in the previous section consists of finding the values of d and « of the
synthesized two-fold PDF that make the distances D.(d, ) minimum. Instead of just giving these values for the
various D, (d, ) considered above, we have found more instructive to represent these functions as two dimensional
curves, so that the quality of the various distances may be understood better.

Let us first show how the difference of relative positions of components can be easily obtained from a repre-
sentation of D.(d,a). In Figure 3, we have represented Dg(d, «) for the double star { Agr and a large range of
values for d and «. In particular, the variation of « includes the values a = 1.35 and o = 0.74 which are both
acceptable if a power spectrum analysis alone would be done. Tt is clear in this representation that the minimum
of the distance Dp(d,«) is close to a = 1.35, and that for the scanning direction considered, the star of lower
intensity is first encountered.

For the same star, we have represented in Figure 4 a two-dimensional representation in gray level of the
different distances and weighting functions for a region of the (d, ) plane which is close to the true solution.

In this example, depending of the various distances and weighting functions, we have obtained the results for
d and o shown on Table 1.

This table gives an idea of the dispersion of the results. If we consider the sharpness of the determination of
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Figure 4: The 15 different distances calculated for a region of the (d,«) plane close to the solution found in
the previous Figure. These distances were computed for p = 07938, d = 07952 to 17025 and a = 1.16 to 1.46.
From left to right, the columns refer to the Euclidean, Kolmogorov, Jeffreys-Matusita, y? and Kullback-Leibler
distances. From top to bottom, the lines consider these distances for the raw PDF, the PDF weighted by I I,
and the PDF weighted by (I? + I3).
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Figure 5: Examples of distance for the sets of scans of five infrared binary stars. From right to left and from
top to bottom : Jeffreys-Matusita distance with the I; Is weighting function for v Vir computed for p = (//750,
Euclidean distance for ¢ Ori computed for p = 07655, x* distance with the (I7 + I3) weighting function for
Gl 866 computed for p = 07285, Kolmogorov distance with the I I, weighting function for GI 804 computed
for p = 07190, Kullback-Leibler distance for the first set of data of GI 473 computed for p = 07190, Euclidean
distance with the I; I, weighting function for the second set of data of GI 473 computed for p = (//375.

the parameters d and «, we have to exclude the values obtained for the Euclidean distance (fully contaminated
by the noise), and the two Kullback-Leibler distances between the weighted PDF's (clearly deteriored here by this
kind of operation). So we can write :

(9)

d=d, T 6, = d=0"9860 = 070055
a=a,t o, = a=1350710.025

where d, and a, are the average values of d and «, and o4 and o, are the root mean squares of the results

obtained in Table 1. We must say however that the quality of these determinations varies from one curve to
another depending on the values of d, o, and the noise.

3.2.2 Results for the other binary stars in the near-infrared

The analysis detailed in subsection 3.2.1 is applied here for the double stars v Vir, { Agr, GI 866, GI 804
and Gl 473. The first two stars and ¢ Agr are bright double stars, with large orbit periods (856 years for { Agr,
171 years for v Vir and 1509 years for ¢ Ori, according to the Sky Catalogue 2000.0'7). But the last three ones
(GI 866, G! 804 and GI 473) are very different. In fact, all of them are less bright, and their orbit periods are



double star | n, reference star | ns direction date separation d intensity ratio «
v Vir 654 HR 4837 640 Nto S 26/03/1991 || 0770857070035 1.12570.025
¢ Ore 384 € Or: 192 EtoW 29/03/1991 07565707030 14.572
Gl 866 1011 256 . to. 10/12/1987 07230707030 0.6070.20
Gl 804 896 HR 7914 480 EtoW 28/03/1991 07230707015 3.1570.35
Gl 473#1 893 || SRS 427125 | 636 || N-E to S-W | 27/03/1991 07195707020 0.9570.10
Gl 473#2 | 673 || SRS 427125 | 328 || S-E to N-W | 27/03/1991 || 0738302070060 1.09070.025

Table 2: Results obtained for the other five infrared double stars in the near-infrared. n, is the number of scans
for the binary star and n; is the number of scans for the reference star. Scanning direction and date of observation
are given, as well as the values and the uncertainties found for the stars separations d and the intensity ratios «.

Figure 6: The two scanning directions and the rela-
tive position of the two components of GI 473 (the
brightest one being on the center). This figure shows
how the PI technique can give a point in the orbit of
the observed double star.

shorter : around 2.2 years for GI 866 (Leinert et al.!?) and 9.5 years for GI 473 (Perrier et al.l®

and results about these objects are therefore more interesting.

). Observations

We give in Table 2 the results of the determination of d and « obtained for these five binary stars with, for
each one, a brief characterization of the data (in mean of number of scans, date of observation and slit direction).
We also show, for each star, one of the computed distances (cf. Figure 5). If we consider the two last results for
Gl 473 given in Table 2, and by making use of the representation made in Figure 6, we can write for the vector
of position d (characterized by the separation d and the position angle ) and the intensity ratio of the brightest
star on the lower o :

d=0"430 + 07015
9= (160 + 5)°
o =1.090 £+ 0.025



4 DISCUSSION

The results we have presented in this paper may bee seen as first quantitative results in PI on one-dimensional
images. The first paper published on the double star ¢ Aqr (Aime et al.?) was a first exploration of the technique,
based mainly on a visual inspection of the PDF’s curves. The present paper goes further and present a more
objective and quantitative analysis, which has the advantage to take into account the state of the atmospheric
turbulence through the images of the reference star. The results are in good agreement with the star’s ephemerids.
The accuracy seems to be remarkable : a few percents for the intensity ratio, the tenth of the diffraction limit for
the separation.

Several improvements to this technique may be performed. At present, we compute the distances on a 16x16
grid centered on the supposed minimum. The minimum is then clearly visible on the curves (cf. Figure 4 and

Figure 5). This is a lot of useless calculus ; we plan to use an algorithm of minimum searching, for example by
steepest descent.

A second improvement may be on the calculation of the uncertainties. They are currently estimated as the
standart deviation of the values given by several distances used for each star. A calculus based upon each curve
of distance may be more rigorous.

An application of this technique to the visible domain has been tested. But a stronger turbulence made the
processing more difficult, and no good results have been yet obtained. In fact, in the visible domain, it is necessary
to project the 2D specklegrams onto two directions in order to process monodimensional frames. In infrared, this
kind of data is directly obtained by scanning the focal plane with a slit, since it did not exist two-dimensional
infrared cameras in 1987/1991 (or just prototyps). In the visible, 2D images are available and the projections
may lower the signal-to-noise ratio. We should obtain better results by computing the PDFs directly on the 2D
images. The distances would become in that case functions of 3 variables : D,(d,,dy. a), where d, and d, are
the components of the separation vector d.

A possible application to triple stars or more complicated objects may be of interest. But the complexity of
the calculation increases quickly. For a triple star, one has to consider distances depending on six parameters and
compute more than 16 millions PDF's corresponding to the synthesized triple stars if one want to keep a sampling
of 16 points in each direction of the distance function. For an object with N components, the distance functions
depend on 3N — 3 parameters, the number of PDFs to compute is then 16°" 3., Thus it should be better to
apply another kind of processing in such cases. Aime et al.2 have shown the existence of a mathematical relation
between the two-fold PDF of an object and the three-fold PDF of its point-spread function (reference star). It is
probably this kind of analysis that will be used in the future to apply PI to extended objects.
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