Université de Nice-Sophia Antipolis

Département de Physique

Licence Sciences Physiques & Chimiques TPs Oscillateurs & Filtres

Liste des TPs

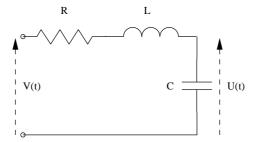
- 1. SYSTÈME OSCILLANT À UN DEGRÉ DE LIBERTÉ : Régime des oscillations libres
- 2. SYSTÈME OSCILLANT À UN DEGRÉ DE LIBERTÉ : Régime des oscillations forcées
- 3. ETUDE DE FILTRES RC

SYSTÈME OSCILLANT À UN DEGRÉ DE LIBERTÉ

Régime des oscillations libres

1 Introduction

Considérons le circuit alimenté par une tension V(t).



L'application de la loi d'Ohm donne :

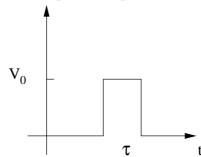
$$Ri + L\frac{di}{dt} + \frac{q}{C} = V(t)$$

avec i = dq/dt et q = CU(t), d'où :

$$LC\frac{d^2U(t)}{dt^2} + RC\frac{dU(t)}{dt} + U(t) = V(t)$$

Nous vous proposons d'étudier la fonction U(t) pour deux types de tension V(t):

-V(t) est une impulsion brève, ce qui nous permettra d'étudier les oscillations libres du système. C'est l'objet de cette première partie.



-V(t) est une tension sinusoïdale. Dans ce cas nous étudierons les oscillations forcées, ce sera la seconde partie.

2 Etude théorique

La tension V(t) est une impulsion brève de durée τ . Pour $t > \tau$, V(t) = 0 dans les relations écrites plus haut. Alors la tension U(t) aux bornes d'un condensateur est solution de l'équation :

$$LC\frac{d^2U(t)}{dt^2} + RC\frac{dU(t)}{dt} + U(t) = 0$$

C'est une équation différentielle du second ordre, homogène, à coefficients constants. L'allure des solutions dépend des racines de l'équation caractéristique :

$$LCr^2 + RCr + 1 = 0$$

qui peut s'écrire :

$$r^2 + 2\delta r + \omega_0^2 = 0$$

avec $\delta = \frac{R}{2L}$ et $\omega_0^2 = \frac{1}{LC}$. ω_0 est la pulsation des oscillations libres non amorties et δ l'amortissement, encore appelé décrément logarithmique. Le discriminant de cette équation caractéristique est :

$$\Delta = 4(\delta^2 - \omega_0^2)$$

1. Régime apériodique : $\Delta > 0$, $R > 2\sqrt{L/C}$. L'amortissement est fort, les racines de l'équation caractéristique sont réelles :

$$r = -\delta \pm \sqrt{\Delta} = -\delta \pm \sqrt{\delta^2 - \omega_0^2}$$

$$r = -\delta \pm \omega.$$

Alors:

$$U(t) = e^{-\delta t} (A_1 e^{\omega t} + A_2 e^{-\omega t}).$$

Les constantes A_1 et A_2 sont déterminées par les conditions à l'origine.

2. Régime sinusoïdal amorti ou pseudo-périodique : $\Delta<0,\,R<2\sqrt{L/C}.$ Les racines de l'équation caractéristique sont complexes :

$$r = -\delta \pm j\sqrt{-\Delta} = -\delta \pm j\sqrt{\omega_0^2 - \delta^2}$$

$$r = -\delta \pm j\omega.$$

Alors:

$$U(t) = e^{-\delta t} (A_1 e^{j\omega t} + A_2 e^{-j\omega t})$$

ou

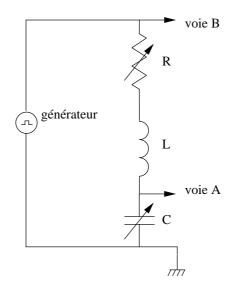
$$U(t) = A_0 e^{-\delta t} \sin(\omega t + \phi)$$

3. Régime critique : $\Delta=0,\ \delta=\omega_0$. La résistance a alors la valeur critique $R_c=2\sqrt{L/C},$ et :

$$U(t) = e^{-\delta t}(A + Bt)$$

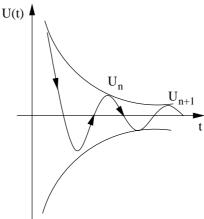
3 Etude expérimentale

1. Réaliser le montage suivant :



Le générateur est réglé pour délivrer des signaux rectangulaires dont on choisira la largeur et l'amplitude de manière à pouvoir observer correctement les oscillations sur l'écran de l'oscilloscope.

- Prendre C =10nF, et faire varier R de 0 à 5k Ω . Observer les différents régimes. Quand R=0, les oscillations sont toujours amorties, pourquoi?
- Pour $C=10,\ 32,\ 68,\ 122,\ 500$ et $1000 \mathrm{nF}$ et $R=0,\ \mathrm{mesurer}$ la période T_0 des oscillations.
- Pour les mêmes valeurs de C, déterminer au mieux la valeur de la résistance critique R_c .
- Pour C=10nF, mesurer l'amplitude des oscillations successives, pour différentes valeurs de R et en déduire les valeurs de δ .



$$U_n = e^{-\delta nT}$$

$$U_{n+1} = e^{-\delta(n+1)T}$$

$$\delta = \frac{1}{T} \ln \left(\frac{U_n}{U_{n+1}} \right)$$

- Tracer les courbes expérimentales et théoriques $\omega_0 = f(1/\sqrt{C}), R_c = f(1/\sqrt{C}).$
- Tracer la courbe $\delta = f(R)$ et comparer à la courbe théorique.
- On déduira L des résultats précédents.
- 2. Représentation dans le plan des phases.

Dans le plan des phases, on porte en abscisse U(t) et en ordonnée $\frac{dU(t)}{dt}$ qui est la vitesse de variation de U(t).

Calculons $\frac{dU(t)}{dt}$ dans le cas du mouvement sinusoïdale amorti :

$$U(t) = Ae^{-\delta t}\sin(\omega t - \phi)$$

$$\frac{dU(t)}{dt} = A\omega e^{-\delta t}\cos(\omega t - \phi) - A\delta e^{-\delta t}\sin(\omega t - \phi).$$

Pour δ petit, on aura :

$$\frac{dU(t)}{dt} = A\omega e^{-\delta t}\cos(\omega t - \phi)$$

Les coordonnées polaires du point représentatif M, ρ , et θ seront données par :

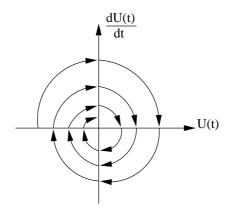
$$\rho \cos \theta = ae^{-\delta t} \sin(\omega t - \phi)$$
$$\rho \sin \theta = b\omega e^{-\delta t} \cos(\omega t - \phi).$$

En choisissant convenablement a et b, on peut écrire :

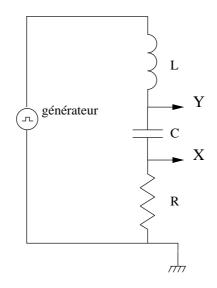
$$\rho = \rho_0 e^{-\delta t} \text{ et } \theta = \omega t - \phi$$

La courbe décrite par le point M est donc une spirale logarithmique dont l'équation peut s'écrire :

$$\rho = \rho_0 e^{-\delta\theta/\omega}.$$



Pour observer la spirale logarithmique, faire le montage suivant :



$$\begin{array}{lcl} X & = & R \frac{dq}{dt} = RC \frac{dU}{dt} \\ \\ Y & = & R \frac{dq}{dt} + \frac{q}{C} = U + RC \frac{dU}{dt} = U. \end{array}$$

On choisira RC assez faible pour que Y=U.

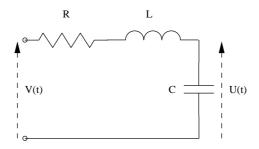
Pour différentes valeurs de R, regarder comment se déforme la spirale et interpréter ces déformations.

Mesurer les valeurs du décrément logarithmique δ pour $C=10 \mathrm{nF}$ et $R=230\Omega$ et 400Ω . Pour celà, on pourra utiliser des reproductions de photos de l'écran. On fera plusieurs mesures.

SYSTÈME OSCILLANT À UN DEGRÉ DE LIBERTÉ

Régime des oscillations forcées

On se propose d'étudier le circuit RLC suivant :



1 Etude mathématique

Le circuit est soumis à une tension V(t) imposée par un générateur. On étudie le cas où V(t) est une tension sinusoïdale : $V(t) = V_0 e^{j\omega t}$. La tension U(t) aux bornes du condensateur est solution de l'équation :

$$LC\ddot{U}(t) + RC\dot{U}(t) + U(t) = V_0 e^{j\omega t}$$

On cherche les solutions de la forme : $U(t) = U_0 e^{j(\omega t - \phi)}$. L'équation devient :

$$(1 - LC\omega^2 + jRC\omega)U_0e^{-j\phi} = V_0.$$

D'où:

$$U_0 = \frac{V_0}{\sqrt{(1 - LC\omega^2)^2 + (RC\omega)^2}}$$
$$\tan(\phi) = \frac{RC\omega}{1 - LC\omega^2}$$

On définit les grandeurs suivantes :

- la pulsation de résonance : $\omega_0 = \frac{1}{\sqrt{LC}}$ - le facteur de surtension : $Q = \frac{L\omega_0}{R} = \frac{R_c}{2R}$ D'où:

$$U_0 = \frac{V_0}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_0}\right)^2\right)^2 + \left(\frac{1}{Q}\left(\frac{\omega}{\omega_0}\right)\right)^2}}$$
$$\tan(\phi) = \frac{1}{Q} \frac{\left(\frac{\omega}{\omega_0}\right)}{1 - \left(\frac{\omega}{\omega_0}\right)^2}$$

On appelle la fonction de transfert ou gain : $T(\omega) = \frac{U_0}{V_0}$, soit :

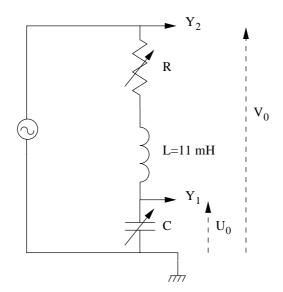
$$T(\omega) = \frac{1}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_0}\right)^2\right)^2 + \left(\frac{1}{Q}\left(\frac{\omega}{\omega_0}\right)\right)^2}}$$

A la fréquence de résonance, $T(\omega_0) = Q$. La tension aux bornes du condensateur est alors Q fois plus grande que la tension appliquée (surtension). On appelle "bande passante à 3dB (décibels)", la bande (intervalle) de fréquence pour laquelle $T(\omega) > T(\omega_0)/\sqrt{2}$. Ceci est obtenu pour $\omega_0(1-\frac{1}{2Q}) \le \omega \le \omega_0(1+\frac{1}{2Q})$, et la largeur de la bande passante est : $B = \omega_0/Q$.

2 Etude expérimentale

L'objet de cette manipulation est d'étudier la fonction de transfert $T(\omega)$. L'étude de l'amplitude et de la phase purront se faire simultanément.

1. Etude de l'amplitude des oscillations. Réaliser le montage suivant :



Le générateur est réglé pour délivrer des signaux sinusoïdaux.

Pour C=500nF et différentes valeurs de R correspondant à des facteurs de surtension Q, égaux à : 0.1, 1, 2 et 5, tracer les courbes $T(\omega)$ en fonction de ω/ω_0 . Pour cela, on mesurera l'amplitude des oscillations aux bornes de C en fonction de la fréquence, en maintenant la tension d'entrée V_0 à 1 volt. Tracer les courbes théoriques et expérimentales correspondant aux mêmes valeurs de Q, à la même échelle afin de les comparer facilement. Déterminer dans les deux cas la bande passante à 3dB.

2. Etude de la phase des oscillations.

En utilisant le montage précédent dans lequel V_0 sera appliqué à la voie X de l'oscilloscope, on déterminera le déphasage Φ entre V_0 et U_0 par la méthode de Lissajous. On prendra C=500nF, Q=0.1, 2 et 5. (Faire les mesures en même temps que les précédentes).

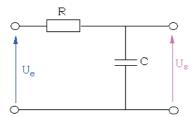
Comparer les courbes obtenues aux courbes théoriques correspondantes.

ETUDE DE FILTRES RC

Dans cette manipulation, on mesurera expérimentalement la réponse (amplitude et phase) en fonction de la fréquence de trois filtres RC simples : passe-bas, passe-haut et passe-bande. On en déduira les domaines de fréquence dans lesquels ces filtres peuvent être considérés comme intégrateur ou dérivateur suivant l'étendue spectrale du signal d'entrée.

1 FILTRE PASSE-BAS

1.1 Réponse tension-fréquence



Le rapport d'atténuation de la tension de sortie U_s par rapport à la tension d'entrée U_e , s'écrit :

$$A = \frac{U_s}{U_e} = \frac{1}{1 + jRC\omega} = \frac{1}{1 + j\tau\omega}$$

On notera que A ne dépend que de $\omega \tau$ où $\tau = RC$ est la constante de temps.

A et $\omega \tau$ sont des grandeurs sans dimension et τ a la dimension d'un temps.

Le facteur d'atténuation G exprimé en décibels s'écrit :

$$G = 20log|A| = -20log|1 + jRC\omega|$$

On voit que si

 $\omega \longrightarrow 0$, l'équation $G=f(log\omega)$ tend vers l'équation de la droite $G_1=-20log(1)=0$

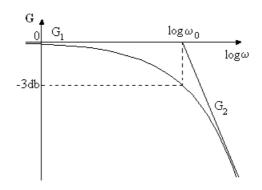
 $\omega \longrightarrow \infty$, G=f(log ω) tend vers $G_2 = -20log|jRC\omega|$

La courbe représentative de G a donc deux asymptotes :

 G_1 quand $\omega \to 0$ et G_2 quand $\omega \to \infty$

On remarque que:

1. le point d'intersection de G_2 avec l'axe G = 0 déterminé par $G_2 = -20log(RC\omega_0)$ donne $\omega_0 = 1/RC$ soit $f_0 = 1/2\pi RC$.



- 2. La pente de l'asymptote G_2 a pour valeur -20. Donc G_2 varie de 20db lorsque $log(\omega)$ varie d'une unité c'est-à-dire lorsque ω est multiplié par 10, soit une variation de 20db par décade. Si ω est multiplié par 2, ce qui correspond à une variation d'un octave, G_2 varie de -6db; la pente est donc de -6db par octave.
- 3. Le circuit étudié est un filtre passe-bas, puisque G décroît indéfiniment lorsque ω croît.
- 4. On peut définir la bande passante à 3db par le domaine dans lequel G est compris entre $G_m = G$ maximum et $G' = G_m 3db$.

 G_m correspond à $A = A/\sqrt{2}$. Ici ona :

$$G_m = 0$$
 d'où $G' = -3db = -20log|1 + j\omega'\tau|$
donc $|1 + j\omega'\tau| = \sqrt{2} = \sqrt{1 + \omega'^2\tau^2}$ et $\omega' = \omega$

1.2 Réponse phase-fréquence

On peut écrire :

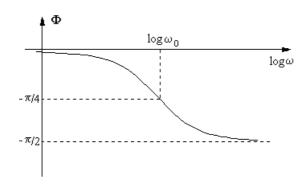
$$A = \frac{1 - j\omega\tau}{1 + \omega^2\tau^2} = |A| e^{j\varphi} = |A| (\cos\varphi + j\sin\varphi)$$

où $cos\varphi > 0$ et $sin\varphi \le 0$ donc $0 < \varphi \le \pi/2$

$$tg\varphi = -\omega\tau = -\omega/\omega_0$$

Si
$$\omega \longrightarrow 0, \ \varphi \longrightarrow 0$$
 et si $\omega \longrightarrow \infty, \ \varphi \longrightarrow -\pi/2$

Le graphe $\phi = f(\log \omega)$ aura deux asymptotes $\phi = 0$ et $\phi = \pi/2$



1.3 Réponse tension-temps

Si une tension U_e est appliquée aux bornes du circuit, à un instant quelconque t, la loi d'Ohm s'écrit :

$$U_e(t) = \frac{q}{C} + R\frac{dq}{dt}$$

où q est la charge du condensateur à l'instant t.

La solution générale de l'équation sans second membre est :

$$q(t) = k \, exp(\frac{-t}{RC})$$

En utilisant la méthode de la variation de la constante pour déterminer k on obtient :

$$q(t) = \frac{1}{R} \exp(\frac{-t}{RC}) \int_0^t U_e(t') \exp(\frac{-t'}{RC}) dt'$$

La tension aux bornes de la capacité est :

$$U_s(t) = \frac{q}{C}$$

Si la tension U_e est une impulsion dont la largeur est très petite devant $\tau = RC$, ou bien si U_e est une tension périodique dont la période est très petite devant τ , soit $t/\tau << 1$, on peut remplacer les exponentielles par leur développement au premier ordre. Alors :

$$U_s(t) = \frac{1}{RC} \int_0^t U_e(t')dt'$$

La tension aux bornes du condensateur est égale à l'intégrale de la tension d'entrée U_e . Le circuit fonctionne en tant qu'intégrateur. Ceci n'est vrai que lorsque $t/\tau << 1$ c'est-à-dire lorsque $\varphi \longrightarrow -\pi/2$ et $U_s \longrightarrow 0$

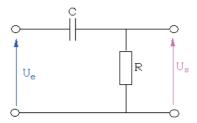
1.4 Manipulation

- Réalisez le circuit.
- Tracer G en fonction de log(f). G sera lu directement en db à sur le millivoltmètre Philips. f est la fréquence.
- Déterminer expérimentalement f_0 à partir de l'intersection de G_2 avec l'axe G=0 et à partir de la bande passante à -3db. Comparer à la valeur de théorique calculée.
- Déterminer expérimentalement la pente de G_2 , et Comparer à la valeur de théorique.
- Tracer la phase ϕ en fonction de log(f). Déterminer expérimentalement les valeurs des fréquences f_{45} et f_{80} pour lesquelles $\phi = 45^{\circ}$ et $\phi = 80^{\circ}$. Comparer aux valeurs théoriques.

– Pour $f > f_0$ vérifiez, dans le cas d'une tension sinusoïdale, carrée ou triangulaire que le circuit se comporte bien en intégrateur. La forme du signal influe-t-elle sur la fréquence frontière à partir de laquelle on peut considérer que le circuit est "bon intégrateur"? On justifiera la réponse en considérant l'analyse harmonique du signal.

2 FILTRE PASSE-HAUT

2.1 Réponse tension-fréquence



Montrer que:

$$A = \frac{U_s}{U_e} = \frac{j\omega\tau}{1 + j\omega\tau}$$

et que : G = 20log|A| admet deux asymptotes :

$$G_1 = 0$$
 quand $\omega \longrightarrow \infty$ et $G_2 = 20log(\omega \tau)$ quand $\omega \longrightarrow 0$.

Montrer d'autre part que l'intersection de G_2 avec l'axe G=0, ainsi que la limite basse de la bande passante à -3db, est $\omega_0=1/RC$.

2.2 Réponse phase-fréquence

Etudier les variations de ϕ en fonction de la fréquence. Déterminer les valeurs asymptotiques lorsque $\omega \longrightarrow 0$ et $\omega \longrightarrow \infty$

2.3 Réponse tension-temps

Montrer que la tension aux bornes de la résistance :

$$U_s(t) = R \frac{dq}{dt}$$

s'écrit en intégrant successivement par partie :

$$U_s(t) = RCU'(t) - (RC)^2 U''(t) + (RC)^3 U'''(t) + \dots + exp(\frac{-t}{RC})(U_0 - RCU'_0 - (RC)^2 U''_0 + \dots)$$

où
$$U = U_e$$
 et $U_0 = U_e(0), U'_0 = U'_e(0), ...$

Si la tension U_e est une fonction sinusoïdale dont la période T est grande devant RC, ou si c'est une fonction périodique ou non dont le spectre des fréquences est borné par $f_{sup} = 1/T_{min}$, alors t/RC >> 1. Au premier ordre on peut écrire :

$$U_s(t) = RC \ U_s'(t)$$

La tension de sortie U_s est égale à la dérivée de la tension d'entrée. On remarquera que ceci se produit lorsque :

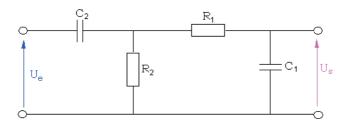
$$\phi \longrightarrow \frac{\pi}{2} - 2k\pi$$
 et lorsque $U_s \longrightarrow 0$

2.4 Manipulation

Identique à celle du filtre passe-bas.

Pour le dernier point, on travaillera à $f < f_0$ et on remarquera que, contrairement à l'intégration, la dérivation dépend de la forme du signal.

3 FILTRE PASSE-BANDE



Un tel filtre peut être constitué par le couplage d'un filtre passe-haut et d'un filtre passe-bas, comme l'indique la figure ci-dessus.

3.1 Réponse tension-fréquence

Montrer que:

$$A = \frac{j\omega\tau_2}{1 - \tau_1\tau_2\omega^2 + j\omega(\tau_1 + \tau_2 + R_2C_1)}$$

où
$$\tau_1 = R_1 C_1$$
 et $\tau_2 = R_2 C_2$

et que A passe par un maximum pour :

$$A_{max} = \frac{\tau_2}{\tau_1 + \tau_2 + R_2 C_1} \quad pour \ \omega_0^2 = \frac{1}{\tau_1 \tau_2}$$

que G = 20log|A| admet deux asymptotes :

 $G_1 = 20log(\tau_2\omega)$ quand $\omega \longrightarrow 0$ et $G_2 = 20log(\tau_1\omega)$ quand $\omega \longrightarrow \infty$ dont les intersections avec l'axe G = 0 sont respectivement : $\omega_{01} = 1/\tau_2$ et $\omega_{02} = 1/\tau_1$.

Soit
$$B = \tau_1 + \tau_2 + R_2 C_1$$

On peut montrer en utilisant la méthode détaillée dans I que les limites de la bande passante à -3db sont :

$$\bar{\omega}_B = 2\pi f_B = \left[\frac{2\omega_0^2 + B^2\omega_0^4 - \omega_0^3 B\sqrt{4 + B^2\omega_0^2}}{2}\right]^{1/2}$$

et

$$\bar{\omega}_H = 2\pi f_H = \left[\frac{2\omega_0^2 + B^2\omega_0^4 + \omega_0^3 B\sqrt{4 + B^2\omega_0^2}}{2}\right]^{1/2}$$

3.2 Réponse phase-fréquence

Etudier la variation du déphasage ϕ entre la tension de sortie et la tension d'entrée en fonction de ω en montrant d'abord que la relation explicitant A permet d'écrire :

$$tg(\phi) = \frac{1 - \tau_1 \tau_2 \omega^2}{B\omega}$$

3.3 Réponse tension-temps

Selon le domaine de fréquence considéré, ce circuit se comporte comme intégrateur $(f >> f_H)$ ou comme dérivateur $(f << f_B)$. Si le signal d'entrée est une somme de signaux de fréquences comprises entre f_B et f_H il est transmis sans distorsion notable, mais avec une atténuation.

3.4 Manipulation

Réaliser le circuit. Tracer la courbe de G en fonction de logf. En déduire les limites de la bande passante à -3db et comparer les valeurs trouvées aux valeurs théoriques. Tracer la courbe de la phase ϕ en fonction de logf. Observer en particulier que cette phase passe par zéro pour

$$f = \frac{1}{2\pi\sqrt{\tau_1\tau_2}}$$

Etudier, en fonction de la fréquence, le comportement de ce circuit lorsque la tension d'entrée est sinusoïdale, carrée ou triangulaire.