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Atoms with two electrons
The Schrödinger equation for a 3-body 

system

• The He-atom (or an ion with two electrons)
⁃ Two electrons + a nucleus with charge +Ze
⁃ ⇒  a 3-body problem

• Exact, analytic solutions are not possible

• We will need approximation methods
⁃ Perturbation theory

The Schrödinger equation

• In centre-of-mass coordinates:
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here:  r12 = |~r1 � ~r2|
Simplifications:  M = 1 ) µ = me

• We introduce Atomic units 
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Atomic units

• Atomic units  (a.u) are used to simplify calculations
⁃  Most constants disappear from Hamiltonians and 

the Schrödinger 

• Starting point :  the following natural constants are set 
to one:

e = me = ~ =
1

4⇡"0
= 1

• Be careful with quantitative calculations
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• The 2-electron system Hamiltonian in atomic units: 

✓
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• Consequences of the term : /
1

r12
⁃  (~r1, ~r2)  cannot be factorised 
⁃ The exact solutions must be entangled states
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Symmetry

• With two electrons, symmetry becomes important
⁃  Spin will matter, due to symmetry

• Total wave function: product of spatial and spin parts

 (q1, q2) =  (~r1,~r2) �(~s1,~s2)

• The Hamiltonian does not depend on spin
⁃ the wave function can be factorised

The Pauli principle

• The total wave function for two identical fermions is  
antisymmetric with respect to exchange of the particles

• Two identical fermions cannot occupy the same 
quantum state simultaneously 

• For the product function  (q1, q2) , we have two 
options:
⁃  (~r1,~r2)  symmetric and  �(~s1,~s2)  anti-symmetric
⁃  (~r1,~r2)  anti-symmetric and  �(~s1,~s2)  symmetric

Exchange symmetry

• The exchange operator:  P12 

P12 (q1, q2) =  (q2, q1)
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• A permutation of spatial coordinates: 
⁃ if  P12 (q1, q2) = � (q1, q2) 
⁃ P 2

12 (q1, q2) = �2 (q1, q2) =  (q1, q2)
⁃ ) � = ±1
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Spin wave functions

• For each of the two spin functions, there are only two 
options
⁃  Spin-up or Spin-down

• We define kets in the two spin-spaces:8
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• Compound spin function ;
⁃ four possibilities:

�1(~s1,~s2) : |+ i1 ⌦ |+ i2 = | + + i
�2(~s1,~s2) : |+ i1 ⌦ |�i2 = | + �i
�3(~s1,~s2) : |�i1 ⌦ |+ i2 = | � + i
�4(~s1,~s2) : |�i1 ⌦ |�i2 = | � �i

⁃ (assume that the spatial functions are different, so 
the Pauli principle does not forbid  �1  and  �4 )

• There are 2 problems with this basis:

• Problem 1 :
⁃ �1  and  �4  are exchange symmetric , BUT
⁃ �2  and  �3  are neither symmetric, nor anti-

symmetric 
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• We need a description for the “total spin”
⁃ In absence of spin-spin interaction:  

h
~S1 , ~S2

i
= 0

⁃ ⇒  Logical choice :  ~S ⌘ ~S1 + ~S2

⁃ )
⇢

Sz = S1z + S2z

S2 = S2
1 + S2

2 + 2 ~S1 · ~S2

⁃ ⇒  Quantum numbers S and MS

⁃ The action of  S2  and  Sz  on  �1 , �2 , �3 , �4  can 
be calculated (using the Pauli spin matrices)

• Problem 2 :

⁃ Sz | + + i = | + + i
S2 | + + i = 2 | + + i

⁃ Sz | + �i = 0
S2 | + �i = | + �i+ | � + i

⁃ Sz | � + i = 0
S2 | � + i = | + �i+ | � + i

⁃ Sz | � �i = �| � �i
S2 | � �i = 2 | � �i

⁃ �2  and  �3 are not eigenfunctions to S2

⁃ ⇒  To have a diagonal basis, where all basis 
functions are either symmetric or anti-symmetric 
at exchange, we need to replace �2  and  �3

• New functions:

⁃ | S i / | + �i+ | � + i
|A i / | + �i � | � + i
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• ⇒  A basis of four functions:  |SMS i

• 3 symmetric functions (a triplet) :

⁃
8
<

:

| 1, 1 i = | + + i
| 1, 0 i = | S i = 1p

2
(| + �i+ | � + i)

| 1,�1 i = | � �i

• 1 anti-symmetric function (a singlet) :

⁃ | 0, 0 i = |A i = 1p
2
(| + �i � | � + i)
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The ground state of He

Perturbation Theory

• Assume that the interaction term can be treated as a 
perturbation:

H = H0 +H 0

H0 = �
r2
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H 0 =
1

r12

• The zero-order solution can be factorized

H0  
(0)(~r1, ~r2) = E0 

(0)(~r1, ~r2)

 (0)(~r1, ~r2) =  
(0)
1 (~r1) 

(0)
2 (~r2)

E0 = E1 + E2

• The zero order ground state will be both electron is 
hydrogenic 1s-orbitals, with Z = 2

 (0) =  1s  1s = (R1sY00) (R1sY00) =  1s2

Identical electrons - the Pauli principle

• We have
⁃ n1 = n2 = 1 , l1 = l2 = 0 , ml1 = ml2 = 0

⁃ The compound spatial wave function HAS to be 
symmetric
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⁃ To avoid violation the Pauli principle, the two 
spins HAVE to be opposite

)  (0) =  1s2 �0,0

| (0) i = | 1s2 i ⌦ | 0, 0 i = | 1s2, 0 0 i

) 1s2 1S) 1s2 1S

The energy of the ground state

• We define this as the ionization energy E
ion

• The zero-order energy (without the perturbation) :

⁃ E0 = E1 + E2 = 2E1s(Z = 2) = 2
�
�Z2hcR1

�

⇡ 2 (�54.4 eV) ⇡ �109 eV

• The perturbation : 
�E = h 1s2 |H 0 | 1s2 i
H 0 = 1

r12

 1s2 =

⇣
Z

amu

⌘3/2
2e�⇢

�2 hq
1
4⇡

i2

) �E ⇡ 34 eV
) E(1s2) ⇡ �109 eV + 34 eV = �75 eV

• This means that 75 eV is the energy needed to remove 
BOTH electrons from the nucleus 
⁃ Suppose one electron has already been removed; 

how much energy is needed to remove the other 
one?

⁃ ⇒ the ionization energy of He+
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⁃ E
ion

(He+) = E
1s

(Z = 2) ⇡ �54.4 eV

• The ionization energy of He :
E

ion

(He) = E(1s2)� E
ion

(He+) ⇡ �21 eV

• Experimental value of the heliume ionization energy : 
-24.6 eV
⁃ The order of magnitude is right, but 
⁃ The energy contribution from the electron-

electron interaction is too great to be treated as a 
perturbation
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Excited states of He

⁃ One of the electrons is in the 1s-orbital
⁃ The other in an nl-orbital (n ≠ 1)

1snl

Exchange degeneracy

• We have two states with the same energy:
 1s(~r1) nl(~r2)

and 
 nl(~r1) 1s(~r2)

• This is the “exchange degeneracy”

Degenerate perturbation theory

• We must use superposition states

• (H0 +H 0)  = (E0 +�E) 
⁃ where:
⁃  = ↵ 1s(~r1) nl(~r2) + �  nl(~r1) 1s(~r2)

⁃ E0 = E1s + Enl

H 0  = �E  

H 0
✓

↵
�

◆
= �E

✓
↵
�

◆
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H 0 =

✓
J K
K J

◆

J =

Z
| 1s(~r1)|2

1

r12
| nl(~r2)|2 d~r1 d~r2

K =

Z
 ⇤
1s(~r1) 

⇤
nl(~r2)

1

r12
 1s(~r2) nl(~r1) d~r1 d~r2

• J : the “direct integral”
⁃ Coulomb interaction between the two charge 

clouds
⁃ Increases energy

• K : the “exchange integral”
⁃ a quantum interference effect

�E = J ±K

E±
1snl = E0

1snl + J ±K

• The wave functions are symmetric or anti-symmetric :
(

 (0)
+ (~r1,~r2) ⌘ 1p

2
[ 1s(~r1) nl(~r2) +  nl(~r1) 1s(~r2)]

 (0)
� (~r1,~r2) ⌘ 1p

2
[ 1s(~r1) nl(~r2)�  nl(~r1) 1s(~r2)]

⁃ entangled states
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Transitions in He

• Selection rule for the total spin : 
�S = 0

• A two-electron atom will only have singlets ( S = 0 ) 
and triplets ( S = 1 )

• There will never be transitions between a singlet and 
triplet

• He gives an appearance of having two separate spectra


