Atoms with two electrons

The Schrödinger equation for a 3-body system

- The He-atom (or an ion with two electrons)
 - Two electrons + a nucleus with charge +Ze
 - \Rightarrow a 3-body problem
- Exact, analytic solutions are not possible
- We will need approximation methods
 - Perturbation theory

The Schrödinger equation

• In centre-of-mass coordinates:

$$\left(-\frac{\hbar^2}{2\mu} \nabla_{r_1}^2 - \frac{\hbar^2}{2\mu} \nabla_{r_2}^2 - \frac{\hbar^2}{M} \nabla_{r_1} \cdot \nabla_{r_2} - \frac{Ze^2}{4\pi\epsilon_0 r_1} - \frac{Ze^2}{4\pi\epsilon_0 r_2} + \frac{e^2}{4\pi\epsilon_0 r_{12}} \right) \psi(\vec{r_1}, \vec{r_2})$$

$$= E\psi(\vec{r_1}, \vec{r_2})$$

here: $r_{12} = |\vec{r_1} - \vec{r_2}|$ Simplifications: $M = \infty \quad \Rightarrow \quad \mu = m_e$

• We introduce Atomic units

Atomic units

- Atomic units (a.u) are used to simplify calculations
 - Most constants disappear from Hamiltonians and the Schrödinger
- Starting point : the following natural constants are set to one:

$$e = m_{\rm e} = \hbar = \frac{1}{4\pi\varepsilon_0} = 1$$

• Be careful with quantitative calculations

Quantity	atomic unit	value in SI units
Charge	е	1.602 176 565 × 10 ⁻¹⁹ C
Mass	me	$9.10938291 \times 10^{-31}$ kg
Angular momentum	ħ	$1.054571726 \times 10^{-34}$ J s
Length	a_0	$0.52917721092 \times 10^{-10}$ m
Energy	$E_{\rm h}$	$4.35974434 \times 10^{-18}$ J
Time	$\hbar/E_{\rm h}$	$2.418884326502 \times 10^{-17}$ s
Force	$E_{\rm h}/a_0$	$8.23872278 \times 10^{-8}$ N
Velocity	cα	$2.18769126379 imes10^{6}\ { m ms^{-1}}$
Momentum	\hbar/a_0	1.992851740 $\times 10^{-24}$
	,	$kg m s^{-1}$
Charge density	e / a_0^3	$1.081202338 \times 10^{12} \mathrm{C} \mathrm{m}^{-3}$
Electric potential	$E_{\rm h}/e$	27.211 385 05 V
Electric field	$E_{\rm h}/(ea_0)$	$5.14220652 \times 10^{11} \mathrm{~V} \mathrm{~m}^{-1}$
Electric dipole moment	ea_0	$8.47835326 \times 10^{-30}\mathrm{Cm}$
Magnetic flux density	$\hbar/(e a_0^2)$	$2.350517464 \times 10^5 \text{ T}$

• The 2-electron system Hamiltonian in atomic units:

$$\left(-\frac{\nabla_{r_1}^2}{2} - \frac{\nabla_{r_2}^2}{2} - \frac{Z}{r_1} - \frac{Z}{r_2} + \frac{1}{r_{12}}\right)\psi(\vec{r_1}, \vec{r_2}) = E\psi(\vec{r_1}, \vec{r_2})$$

- Consequences of the term : $\propto \frac{1}{r_{12}}$
 - $\psi(\vec{r_1}, \vec{r_2})$ cannot be factorised
 - The exact solutions must be entangled states

Symmetry

- With two electrons, symmetry becomes important
 - Spin will matter, due to symmetry
- Total wave function: product of spatial and spin parts

 $\Psi(q_1, q_2) = \psi(\vec{r}_1, \vec{r}_2) \ \chi(\vec{s}_1, \vec{s}_2)$

- The Hamiltonian does not depend on spin
 - the wave function can be factorised

<u>The Pauli principle</u>

- The total wave function for two identical fermions is antisymmetric with respect to exchange of the particles
- Two identical fermions cannot occupy the same quantum state simultaneously
- For the product function $\Psi(q_1, q_2)$, we have two options:
 - $\psi(\vec{r_1}, \vec{r_2})$ symmetric and $\chi(\vec{s_1}, \vec{s_2})$ anti-symmetric
 - $\psi(\vec{r_1}, \vec{r_2})$ anti-symmetric and $\chi(\vec{s_1}, \vec{s_2})$ symmetric

Exchange symmetry

• The exchange operator: P_{12}

$$P_{12}\,\Psi(q_1,q_2) = \Psi(q_2,q_1)$$

- A permutation of spatial coordinates:
 - if $P_{12} \Psi(q_1, q_2) = \lambda \Psi(q_1, q_2)$
 - $P_{12}^2 \Psi(q_1, q_2) = \lambda^2 \Psi(q_1, q_2) = \Psi(q_1, q_2)$
 - $\Rightarrow \lambda = \pm 1$

Spin wave functions

- For each of the two spin functions, there are only two options
 - Spin-up or Spin-down
- We define kets in the two spin-spaces:

$$\begin{cases} |+\rangle_1 = \begin{pmatrix} 1\\0 \end{pmatrix}_1 \\ |-\rangle_1 = \begin{pmatrix} 0\\1 \end{pmatrix}_1 \end{cases} \begin{cases} |+\rangle_2 = \begin{pmatrix} 1\\0 \end{pmatrix}_2 \\ |-\rangle_2 = \begin{pmatrix} 0\\1 \end{pmatrix}_2 \\ |-\rangle_2 = \begin{pmatrix} 0\\1 \end{pmatrix}_2 \end{cases}$$

- Compound spin function ;
 - four possibilities:

$$\chi_{1}(\vec{s}_{1},\vec{s}_{2}) : |+\rangle_{1} \otimes |+\rangle_{2} = |++\rangle$$

$$\chi_{2}(\vec{s}_{1},\vec{s}_{2}) : |+\rangle_{1} \otimes |-\rangle_{2} = |+-\rangle$$

$$\chi_{3}(\vec{s}_{1},\vec{s}_{2}) : |-\rangle_{1} \otimes |+\rangle_{2} = |-+\rangle$$

$$\chi_{4}(\vec{s}_{1},\vec{s}_{2}) : |-\rangle_{1} \otimes |-\rangle_{2} = |--\rangle$$

- (assume that the spatial functions are different, so the Pauli principle does not forbid χ_1 and χ_4)
- There are 2 problems with this basis:
- Problem 1 :
 - χ_1 and χ_4 are exchange symmetric , BUT
 - χ_2 and χ_3 are neither symmetric, nor antisymmetric

- We need a description for the "total spin"
 - In absence of spin-spin interaction: $\left| \vec{S}_1, \vec{S}_2 \right| = 0$

$$\Rightarrow \text{ Logical choice}: \vec{S} \equiv \vec{S}_1 + \vec{S}_2 \\ \vec{S}_2 = S_{1z} + S_{2z} \\ S^2 = S_1^2 + S_2^2 + 2\vec{S}_1 \cdot \vec{S}_2$$

- \Rightarrow Quantum numbers *S* and *M*_{*S*}
- The action of S^2 and S_z on χ_1 , χ_2 , χ_3 , χ_4 can be calculated (using the Pauli spin matrices)
- Problem 2 :

$$S_{z} | + + \rangle = | + + \rangle$$

$$S^{2} | + + \rangle = 2 | + + \rangle$$

$$S_{z} | + - \rangle = 0$$

$$S^{2} | + - \rangle = | + - \rangle + | - + \rangle$$

$$S_{z} | - + \rangle = 0$$

$$S^{2} | - + \rangle = | + - \rangle + | - + \rangle$$

$$S_{z} | - - \rangle = -| - - \rangle$$

$$S_{z} | --\rangle = -| --\rangle$$

$$S^{2} | --\rangle = 2 | --\rangle$$

- χ_2 and χ_3 are not eigenfunctions to S^2
- → To have a diagonal basis, where all basis functions are either symmetric or anti-symmetric at exchange, we need to replace χ₂ and χ₃

• New functions:

$$|\,\mathrm{S}\,
angle \propto |\,+\,-\,
angle + |\,-\,+\,
angle$$

$$|\,\mathrm{A}\,
angle \propto |\,+\,-\,
angle - |\,-\,+\,
angle$$

• \Rightarrow A basis of four functions: $|SM_S\rangle$

• 3 symmetric functions (a triplet):
•
$$\begin{cases} |1,1\rangle &= |++\rangle \\ |1,0\rangle &= |S\rangle = \frac{1}{\sqrt{2}}(|+-\rangle+|-+\rangle) \\ |1,-1\rangle &= |--\rangle \end{cases}$$

• 1 anti-symmetric function (a singlet) :

•
$$|0,0\rangle = |A\rangle = \frac{1}{\sqrt{2}}(|+-\rangle - |-+\rangle)$$

The ground state of He

Perturbation Theory

• Assume that the interaction term can be treated as a perturbation:

$$H = H_0 + H'$$

$$H_0 = -\frac{\nabla_{r_1}^2}{2} - \frac{\nabla_{r_2}^2}{2} - \frac{Z}{r_1} - \frac{Z}{r_2}$$

$$H' = \frac{1}{r_{12}}$$

• The zero-order solution can be factorized

$$H_0 \psi^{(0)}(\vec{r_1}, \vec{r_2}) = E_0 \psi^{(0)}(\vec{r_1}, \vec{r_2})$$

$$\psi^{(0)}(\vec{r_1}, \vec{r_2}) = \psi_1^{(0)}(\vec{r_1}) \psi_2^{(0)}(\vec{r_2})$$

$$E_0 = E_1 + E_2$$

• The zero order ground state will be both electron is hydrogenic 1s-orbitals, with Z = 2

$$\psi^{(0)} = \psi_{1s} \,\psi_{1s} = (R_{1s}Y_{00}) \,(R_{1s}Y_{00}) = \psi_{1s^2}$$

Identical electrons - the Pauli principle

- We have
 - $n_1 = n_2 = 1$, $l_1 = l_2 = 0$, $m_{l1} = m_{l2} = 0$
 - The compound spatial wave function HAS to be symmetric

- To avoid violation the Pauli principle, the two spins HAVE to be opposite

$$\Rightarrow \Psi^{(0)} = \psi_{1s^2} \chi_{0,0}$$
$$|(0)\rangle = |1s^2\rangle \otimes |0,0\rangle = |1s^2,00\rangle$$
$$\Rightarrow 1s^{2} {}^{1}S \Rightarrow 1s^{2} {}^{1}S$$

The energy of the ground state

- We define this as the ionization energy E_{ion}
- The zero-order energy (without the perturbation) : $E_0 = E_1 + E_2 = 2E_{1s}(Z = 2) = 2(-Z^2hcR_{\infty})$ $\approx 2(-54.4 \text{ eV}) \approx -109 \text{ eV}$
- The perturbation :

$$\Delta E = \langle \psi_{1s^2} | H' | \psi_{1s^2} \rangle$$
$$H' = \frac{1}{r_{12}}$$
$$\psi_{1s^2} = \left[\left(\frac{Z}{a_m u} \right)^{3/2} 2 e^{-\rho} \right]^2 \left[\sqrt{\frac{1}{4\pi}} \right]^2$$

$$\Rightarrow \Delta E \approx 34 \text{ eV}$$

$$\Rightarrow E(1\text{s}^2) \approx -109 \text{ eV} + 34 \text{ eV} = -75 \text{ eV}$$

- This means that 75 eV is the energy needed to remove BOTH electrons from the nucleus
 - Suppose one electron has already been removed; how much energy is needed to remove the other one?
 - \Rightarrow the ionization energy of He⁺

•
$$E_{\rm ion}({\rm He}^+) = E_{\rm 1s}(Z=2) \approx -54.4 \,{\rm eV}$$

- The ionization energy of He : $E_{\text{ion}}(\text{He}) = E(1\text{s}^2) - E_{\text{ion}}(\text{He}^+) \approx -21 \text{ eV}$
- Experimental value of the heliume ionization energy : -24.6 eV
 - The order of magnitude is right, but
 - The energy contribution from the electronelectron interaction is too great to be treated as a perturbation

Excited states of He

- One of the electrons is in the 1s-orbital
- The other in an *nl*-orbital $(n \neq 1)$

$1 \mathrm{s} n l$

Exchange degeneracy

- We have two states with the same energy: $\psi_{1\mathrm{s}}(\vec{r}_1) \psi_{nl}(\vec{r}_2)$ and $\psi_{nl}(\vec{r}_1) \psi_{1\mathrm{s}}(\vec{r}_2)$
- This is the "exchange degeneracy"

Degenerate perturbation theory

• We must use superposition states

•
$$(H_0 + H') \psi = (E_0 + \Delta E) \psi$$

• where:
• $\psi = \alpha \psi_{1s}(\vec{r_1}) \psi_{nl}(\vec{r_2}) + \beta \psi_{nl}(\vec{r_1}) \psi_{1s}(\vec{r_2})$
• $E_0 = E_{1s} + E_{nl}$

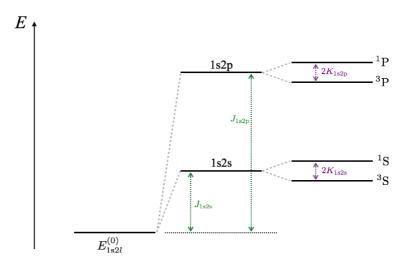
$$H' \psi = \Delta E \psi$$
$$H' \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \Delta E \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

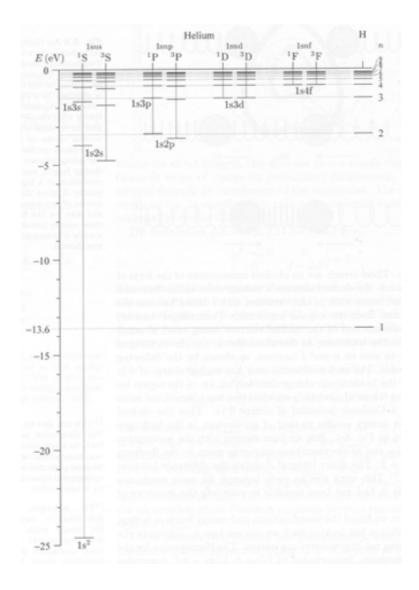
$$\begin{aligned} H' &= \begin{pmatrix} J & K \\ K & J \end{pmatrix} \\ J &= \int |\psi_{1s}(\vec{r_1})|^2 \frac{1}{r_{12}} |\psi_{nl}(\vec{r_2})|^2 \, \mathrm{d}\vec{r_1} \, \mathrm{d}\vec{r_2} \\ K &= \int \psi_{1s}^*(\vec{r_1}) \psi_{nl}^*(\vec{r_2}) \frac{1}{r_{12}} \psi_{1s}(\vec{r_2}) \psi_{nl}(\vec{r_1}) \, \mathrm{d}\vec{r_1} \, \mathrm{d}\vec{r_2} \end{aligned}$$

- *J* : the "direct integral"
 - Coulomb interaction between the two charge clouds
 - Increases energy
- *K* : the "exchange integral"
 - a quantum interference effect

$$\Delta E = J \pm K$$
$$E_{1snl}^{\pm} = E_{1snl}^{0} + J \pm K$$

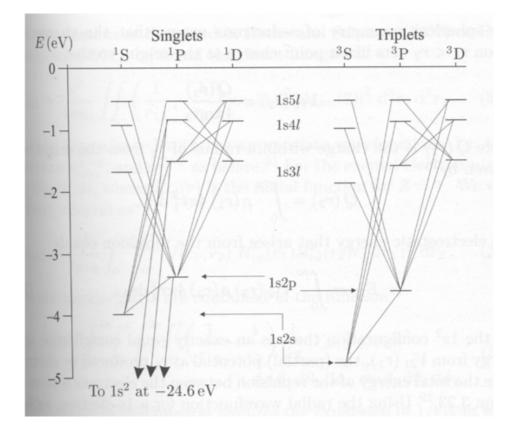
- The wave functions are symmetric or anti-symmetric : $\begin{cases} \psi_{+}^{(0)}(\vec{r}_{1},\vec{r}_{2}) \equiv \frac{1}{\sqrt{2}} \left[\psi_{1\mathrm{s}}(\vec{r}_{1}) \,\psi_{nl}(\vec{r}_{2}) + \psi_{nl}(\vec{r}_{1}) \,\psi_{1\mathrm{s}}(\vec{r}_{2}) \right] \\ \psi_{-}^{(0)}(\vec{r}_{1},\vec{r}_{2}) \equiv \frac{1}{\sqrt{2}} \left[\psi_{1\mathrm{s}}(\vec{r}_{1}) \,\psi_{nl}(\vec{r}_{2}) - \psi_{nl}(\vec{r}_{1}) \,\psi_{1\mathrm{s}}(\vec{r}_{2}) \right] \end{cases}$
 - entangled states





Transitions in He

- Selection rule for the total spin : $\Delta S = 0$
- A two-electron atom will only have singlets (*S* = 0) and triplets (*S* = 1)
- There will never be transitions between a singlet and triplet



• He gives an appearance of having two separate spectra