LS-coupling and *jj*-coupling

Spin-orbit interaction in multi-electron atoms

- We now have two effects to consider:
- 1: Interaction between \vec{s} and \vec{l} for every electron • $\vec{j} = \vec{l} + \vec{s}$
- 2: Angular part of the electrostatic interaction between the electrons

-
$$\begin{cases} \vec{l_1} + \vec{l_2} + \vec{l_3} + \dots = \vec{L} \\ \vec{s_1} + \vec{s_2} + \vec{s_3} + \dots = \vec{S} \end{cases}$$

• Both these effects have to be included in a total Hamiltonian

$$H = H_{\rm CF} + H_{\rm res} + H_{\rm SO}$$

The parts of the Hamiltonian

• The central field Hamiltonian

$$H_{\rm CF} = \sum_{i=1}^{N} H_i = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_{r_i}^2 + V_{\rm CF}(r_i) \right] = \sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_{r_i}^2 - \frac{Z}{r_i} + S(r_i) \right]$$

- kinetic energy of all electrons
- Coulomb attraction to the nucleus for all electrons
- the central (radial) part of the Coulomb repulsion between all electrons

• The residual Coulomb Hamiltonian

$$H_{\rm res} = \sum_{j>i}^{N} \frac{1}{r_{ij}} - \sum_{i=1}^{N} S(r_i)$$

- The angular (residual) part of the Coulomb interaction between electrons
- coupling of the angular momenta of the individual electrons
- The spin-orbit Hamiltonian

$$H_{\rm SO} = \sum_{i=1}^{N} \xi(r_i) \, \vec{l}_i \cdot \vec{s}_i$$

- the sum of all spin-orbit interactions

Filled shells

- For a filled orbital :
 - half of the electrons spin-up, the other half spindown
 - \Rightarrow contribution to *S* from filled shells : zero
 - all electrons with $+m_l$ are balanced by $-m_l$
 - \Rightarrow contribution to *L* from filled shells : zero
- For the sum in H_{SO} , we only need to include the electrons outside the last closed orbital

Total angular momentum

- The interactions between electrons (angular Coulomb + spin-orbit) will couple all electronic angular momenta together
- The only thing that will stay constant is the sum of all of them
 - where
 $$\begin{split} \vec{J} &= \vec{L} + \vec{S} \\ \left\{ \begin{array}{l} \vec{L} &= \sum_i \vec{l_i} \\ \vec{S} &= \sum_i \vec{s_i} \end{array} \right. \end{split}$$
- A crucial point will be in which order all these momenta should be added
- That depends on in which order the perturbations are added

Ordering of the Hamiltonians

- We cannot solve the entire Hamiltonian analytically
 - perturbation theory is necessary
 - but, in which order should we take the Hamiltonians?
- Always true:

$$H_{\rm CF} \gg H_{\rm res}$$
 and $H_{\rm CF} \gg H_{\rm SO}$

- But then, there are two possibilities:
 - $H_{\rm res} > H_{\rm SO}$
 - $H_{\rm SO} > H_{\rm res}$

$H_{\rm res} > H_{\rm SO}$

- In this case, the interaction between the electrons is stronger than the spin-orbit interaction in each of them
 - example with a 2-electron atom:

- Then, L and S couple to a total J

- This situation is called "LS-coupling"
- This approximation is valid for most atoms
 - in particular for light atoms

$$H_{\rm SO} > H_{\rm res}$$

- In this case, the individual coupling between the electrons, via the spin-orbit interaction, is stronger than the electrostatic interaction between them
 - example with a 2-electron atom:

Then, j_1 and j_2 couple to a total J

and

- This situation is called "*jj*-coupling"
- This approximation has importance for heavy atoms
 pure *jj*-coupling is rare
- There are often intermediate cases between *LS* and *jj*

LS-coupling

$$H = H_1 + H_{SO}$$

where
 $H_1 = H_{CF} + H_{res}$

- Begin with :
 - $H_{\rm CF} \,\psi_{\rm CF} = E_{\rm CF} \,\psi_{\rm CF}$
 - \Rightarrow $|\psi_{\mathrm{CF}}\rangle = |n_1 l_1, n_2 l_2, \dots, n_N l_N\rangle$
 - this gives the *electronic configuration*
- Then, calculate the fist perturbation :
 - $\langle \psi_{\rm CF} \mid H_{\rm res} \mid \psi_{\rm CF} \rangle$
 - (for the moment, we wait with the spin-orbit Hamiltonian)
 - $[H_{\text{res}}, L] = [H_{\text{res}}, S] = 0$
 - → this *atomic term* can carachterised by the quantum numbers *L* and *S*
 - ${}^{2S+1}L$
 - Eigenvector : $|\psi_{\rm CF}\rangle = |\gamma L S M_L M_S\rangle$
 - (γ : the electronic configuration)
 - Degenerescence in M_L and M_S
 - \Rightarrow (2L+1)(2S+1) degenerate states

How to find L and S

- Take into account :
 - Rules for addition of angular momenta
 - The Pauli principle

• For a filled shell :

•
$$M_S = \sum_i m_{s_i}$$
 and $M_L = \sum_i m_{l_i}$
• $\Rightarrow L = S = 0$

- no contribution from the inner shells to the global
 L and S
- It is enough to consider the valence electrons

<u>Electrons in different orbitals (non-equivalent)</u>

- The Pauli principle is already taken into account
 - As an example, take a 2-electron atom : $nl_{1}, n'l_{2} \quad (n \neq n')$ $\begin{cases}
 L = |l_{1} - l_{2}|, |l_{1} - l_{2}| + 1, \dots, l_{1} + l_{2} \\
 S = |s_{1} - s_{2}|, |s_{1} - s_{2}| + 1, \dots, s_{1} + s_{2} \\
 (s_{1} = s_{2} = \frac{1}{2}) \Rightarrow S = 0 \text{ or } S = 1 \\
 \end{cases}$ (singlets and triplets)

• example 1 :

- $l_1 = l_2 = 1 \Rightarrow \text{configuration} : n\mathbf{p}, n'\mathbf{p}$
- L = 0 or L = 1 or L = 2
- \Rightarrow possible terms are :
- ${}^{1}S$, ${}^{1}P$, ${}^{1}D$, ${}^{3}S$, ${}^{3}P$, ${}^{3}D$

- example 2 :
 - $l_1 = 1, l_2 = 2 \Rightarrow \text{configuration} : np, n'd$
 - L=1 or L=2 or L=3
 - \Rightarrow possible terms are :
 - ${}^{1}P$, ${}^{1}D$, ${}^{1}F$, ${}^{3}P$, ${}^{3}D$, ${}^{3}F$
- More than 2 electrons
 - a bit more complicated

Electrons in the same orbital (equivalent electrons)

- This will normally be the case for ground state configurations
- More complicated, due to the Pauli principle
- Many states become forbidden
 - we will not cover this in detail
- Example 1 :
 - $n_1 = n_2, \ l_1 = l_2 = 1 \Rightarrow \text{configuration} : np^2$
 - (the case for, for example : C, Si, Ge)
 - \Rightarrow possible terms : ${}^{1}S$, ${}^{1}D$, ${}^{3}P$
 - (other terms possible for *npn*p' are forbidden due to the Pauli principle)
- Example 2 :
 - $n_1 = n_2 = n_3$, $l_1 = l_2 = l_3 = 1$

$$\Rightarrow$$
 configuration : np^3

- (the case for, for example : N, P, As)
- \Rightarrow possible terms : ²P , ²D , ⁴S

Electron configuration	Terms					
ns		^{2}S				
ns^2	${}^{1}\mathbf{S}$					
<i>n</i> p , <i>n</i> p ⁵		^{2}P				
$n\mathrm{p}^2$, $n\mathrm{p}^4$	¹ S, ¹ D		^{3}P			
np ³		² P, ² D				
np^6	${}^{1}S$					
<i>n</i> d , <i>n</i> d ⁹		^{2}D				
$n\mathrm{d}^2$, $n\mathrm{d}^8$	¹ S, ¹ D, ¹ G		³ P, ³ F			
nd^3 , nd^7		² P, ² D, ² F, ² G, ² H (2)		⁴ P, ⁴ F		
$n\mathrm{d}^4$, $n\mathrm{d}^6$	${}^{1}S, {}^{1}D, {}^{1}F, {}^{1}G, {}^{1}I$ (2) (2) (2)		³ P, ³ D, ³ F, ³ G, ³ H (4) (2)		⁵ D	
nd^5		² S, ² P, ² D, ² F, ² G, ² H, ² I (3) (2) (2)		⁴ P, ⁴ D, ⁴ F, ⁴ G		⁶ S
nd^{10}	${}^{1}S$					

More complicated cases

- More than two electrons
- Some equivalent and some non-equivalent electrons
- Configuration mixing

Fine structure in *LS*-coupling

- Now, we add the spin-orbit term of the Hamiltonian :
 H = H₁ + H_{SO}
- The atomic terms have been found :
 - ${}^{2S+1}L$, corresponding to the ket :
 - $|\gamma L S M_L M_S \rangle$
- We now have to find the corrections given by:
 - $\langle \gamma L S M_L M_S | H_{SO} | \gamma L S M_L M_S \rangle$
- Problem :
 - $H_{\rm SO}$ is not diagonal in this representation
 - ($[H_{SO}, L_z] \neq 0$ and $[H_{SO}, S_z] \neq 0$)

Change of basis

- We have to change to the diagonal basis :
 - $|\gamma L S J M_J\rangle$
 - (diagonalisation of $H_{\rm SO}$)

$$|LSJM_J\rangle = \sum_{M_L,M_S} C(LSJM_J; M_LM_S) | \gamma LSM_LM_S\rangle$$

• The coefficients $C(LSJM_J; M_LM_S)$ are the "Clebsch-Gordan coefficients"

Finding the find-structure levels

- $\vec{J} = \vec{L} + \vec{S}$
- addition of angular momenta

$$\begin{cases} J = |L - S|, |L - S| + 1, \dots, L + S \\ M_J = -J, J + 1, \dots, J \end{cases}$$

- For every atomic term, there are (2S+1) fine-structure levels
 - (or (2L+1) if L < S)
- example 1 :
 - configuration : *n*p*n*p'

$^{3}\mathrm{D}$	\Rightarrow	J = 3, 2, 1	\Rightarrow	${}^{3}\mathrm{D}_{1}, {}^{3}\mathrm{D}_{2}, {}^{3}\mathrm{D}_{3}$
$^{1}\mathrm{D}$	\Rightarrow	J=2	\Rightarrow	$^{1}\mathrm{D}_{2}$
$^{3}\mathrm{P}$	\Rightarrow	J = 2, 1, 0	\Rightarrow	${}^{3}\mathrm{P}_{0}, {}^{3}\mathrm{P}_{1}, {}^{3}\mathrm{P}_{2}$
$^{1}\mathrm{P}$	\Rightarrow	J = 1	\Rightarrow	${}^{1}P_{1}$
$^{3}\mathrm{S}$	\Rightarrow	J = 1	\Rightarrow	$^{3}\mathrm{S}_{1}$
$^{1}\mathrm{S}$	\Rightarrow	J = 0	\Rightarrow	$^{1}\mathrm{S}_{0}$

the spin-orbit perturbation H_2 .

- configuration : np^2
- ${}^{1}D_{2}$, ${}^{3}P_{2}$, ${}^{3}P_{1}$, ${}^{3}P_{0}$, ${}^{1}S_{0}$

Spin-orbit energies

• The energy corrections due to the spin-orbit interaction, the fine-structure splitting, can be found via the Hamiltonian

$$H_{\rm SO} = \beta_{LS} \, \vec{L} \cdot \vec{S}$$

- here, β_{LS} is a constant typical for the term $|\gamma LS\rangle$

$$E_{SO} = \langle \gamma L S J M_J | H_{SO} | \gamma L S J M_J \rangle$$

= $\beta_{LS} \langle L S J M_J | \vec{L} \cdot \vec{S} | L S J M_J \rangle$
= $\frac{\beta_{LS}}{2} \langle L S J M_J | J^2 - L^2 - S^2 | L S J M_J \rangle$
= $\frac{\beta_{LS}}{2} [J(J+1) - L(L+1) - S(S+1)]$

• Separation between two fine-structure levels

$$\begin{array}{rcl} E(J) & - & E(J-1) = \\ & = & \frac{\beta_{LS}}{2} \left\{ [J(J+1) - L(L+1) - S(S+1)] \right. \\ & - & [(J-1)J - L(L+1) - S(S+1)] \right\} \\ & = & \frac{\beta_{LS}}{2} \left[J^2 + J - J^2 + J \right] \\ & = & \frac{\beta_{LS}}{2} J \end{array}$$

- "Landé's interval rule"
 - This rule cam be used as a test of how well system can be described by LS-coupling

LectureNotesPhysiqueAtomique

jj-coupling

- This applies when $H_{\rm SO} > H_{\rm res}$
 - The Hamiltonians have to be applied in a different order

$$H = H_2 + H_{res}$$

where
 $H_2 = H_{CF} + H_{SO}$

- Remember that :
 - $H_{\rm SO} \propto Z^4$
 - $H_{\rm res} \propto Z$
 - \Rightarrow *jj*-coupling will be relevant for heavy atoms

$$H_2 = \sum_{i=1}^{N} \left(-\frac{1}{2} \nabla_{r_i}^2 - \frac{Z}{r_i} + S(r_i) \right) + \sum_{i=1}^{N} \xi(r_i) \, \vec{L} \cdot \vec{S}$$

- In this case, we have to begin with the SO-coupling for the individual electrons :
 - we form :

•
$$\vec{j}_1 = \vec{l}_1 + \vec{s}_1, \, \vec{j}_2 = \vec{l}_2 + \vec{s}_2 \, \dots, \, \vec{j}_N = \vec{l}_N + \vec{s}_N$$

- The *jj*-coupling terms, we write as a parentheses with all the *j*-values
- As an example, take a 2-electron atom :

•
$$l_1 = 0, l_2 = 1 \Rightarrow \text{configuration} : ns, n'p$$

• $\begin{cases} l_1 = 0 \\ l_2 = 1 \end{cases}$ and $\begin{cases} s_1 = 1/2 \\ s_2 = 1/2 \end{cases}$

•
$$(j_i = |l_i - s_i|, |l_i - s_i| - 1, \dots, l_i + s_i)$$

• $\Rightarrow \quad j_1 = 1/2 \quad \text{and} \quad j_2 = 3/2, 1/2$
• $\Rightarrow \text{Two possibilities}:$
• $\left(\frac{1}{2}, \frac{1}{2}\right) \quad \text{and} \quad \left(\frac{1}{2}, \frac{3}{2}\right)$

Fine-structure in jj-coupling

- When the terms are determined, $H_{\rm res}$ is added as a perturbation
 - this leads to fine-structure levels, classified by J

•
$$J = |j_1 - j_2|, |j_1 - j_2| - 1, \dots, j_1 + j_2$$

 $\left(\frac{1}{2}, \frac{1}{2}\right) \Rightarrow J = 1, 0 \Rightarrow \begin{cases} \left(\frac{1}{2}, \frac{1}{2}\right)_0 \\ \left(\frac{1}{2}, \frac{1}{2}\right)_1 \end{cases}$
 $\left(\frac{1}{2}, \frac{3}{2}\right) \Rightarrow J = 2, 1 \Rightarrow \begin{cases} \left(\frac{1}{2}, \frac{3}{2}\right)_1 \\ \left(\frac{1}{2}, \frac{3}{2}\right)_2 \end{cases}$

Comparison between coupling schemes

- For light atoms, *LS*-coupling dominates, since the SO-term is small
- For heavy atoms, the situation is often intermediate between *LS* and *jj*

- As example, take the isoelectronic sequence of np^2 atoms
 - C, Si, Ge, Sn, Pb
 - Look at the splittings in the first excites states (¹P and ³P)
 - C has almost pure *LS*-coupling
 - Pb is well described by *jj*-coupling
 - The others are intermediate
 - This can be seen by studying spectra

• In the case of C, the Landé rule holds