 
  
  
  
  
Nous sommes partis de l'équation (7) de l'article précédent :
  
 
en prenant ici N=2 (nombre de composantes de l'objet) et Q=1 (ordre d'analyse pour l'objet). La relation ci-dessus devient alors :
  
 
où X est la position du point d'analyse,   et
  et   les positions de chaque étoile du couple, et
  les positions de chaque étoile du couple, et   et
  et   les intensités de chaque étoile. En faisant l'hypothèse d'invariance par translation et en nommant
  les intensités de chaque étoile. En faisant l'hypothèse d'invariance par translation et en nommant   la séparation des étoiles, on peut écrire :
  la séparation des étoiles, on peut écrire :
  
 
La transformée de Fourier de cette dernière expression nous donne alors la relation qui existe entre les densités de probabilité :
  
 
où   est la densité de probabilité d'ordre 1 de l'étoile double et
  est la densité de probabilité d'ordre 1 de l'étoile double et   celle de la réponse impulsionnelle au décalage correspondant è la séparation des étoiles. Il s'agit d'une intégration sur un chemin rectiligne dans le plan
  celle de la réponse impulsionnelle au décalage correspondant è la séparation des étoiles. Il s'agit d'une intégration sur un chemin rectiligne dans le plan   , cette opération est illustrée dans la figure
 , cette opération est illustrée dans la figure  . C'est en fait une projection de
. C'est en fait une projection de   sur une droite dont la pente est l'arctangente du rapport d'intensité des étoiles
  sur une droite dont la pente est l'arctangente du rapport d'intensité des étoiles   .
 .
  
Figure: Illustration de la relation de projection qui permet de passer du   de l'étoile de référence au
  de l'étoile de référence au   de l'étoile double. Une direction est choisie dans le plan
  de l'étoile double. Une direction est choisie dans le plan   dont l'angle est l'arctangente du rapport d'intensité des deux composantes de l'étoile double ; pour chaque point I mesuré sur cette droite, une intégration de
  dont l'angle est l'arctangente du rapport d'intensité des deux composantes de l'étoile double ; pour chaque point I mesuré sur cette droite, une intégration de   est effectuée dans une direction perpendiculaire (les bornes de l'intégration sont indiquées sur la figure). La valeur ainsi calculée est celle de
  est effectuée dans une direction perpendiculaire (les bornes de l'intégration sont indiquées sur la figure). La valeur ainsi calculée est celle de   recherchée, à une constante multiplicative
  recherchée, à une constante multiplicative   près. Il s'agit là d'une opération de projection des valeurs de
  près. Il s'agit là d'une opération de projection des valeurs de   sur la droite
  sur la droite   .
 .